if rightmost dimension of inputs is unknown prior to
graph execution.
References
[1]: Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE:
Masked Autoencoder for Distribution Estimation. In International
Conference on Machine Learning, 2015. https://arxiv.org/abs/1502.03509
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.distributions.bijectors.masked_dense\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/distributions/python/ops/bijectors/masked_autoregressive.py#L358-L437) |\n\nA autoregressively masked dense layer. (deprecated) \n\n tf.contrib.distributions.bijectors.masked_dense(\n inputs, units, num_blocks=None, exclusive=False, kernel_initializer=None,\n reuse=None, name=None, *args, **kwargs\n )\n\n| **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed after 2018-10-01. Instructions for updating: The TensorFlow Distributions library has moved to TensorFlow Probability (https://github.com/tensorflow/probability). You should update all references to use [`tfp.distributions`](/probability/api_docs/python/tfp/distributions) instead of [`tf.contrib.distributions`](../../../../tf/contrib/distributions).\n\nAnalogous to [`tf.compat.v1.layers.dense`](../../../../tf/layers/dense).\n\nSee \\[Germain et al. (2015)\\]\\[1\\] for detailed explanation.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|----------------------|------------------------------------------------------------------------------------------------------------------------------------|\n| `inputs` | Tensor input. |\n| `units` | Python `int` scalar representing the dimensionality of the output space. |\n| `num_blocks` | Python `int` scalar representing the number of blocks for the MADE masks. |\n| `exclusive` | Python `bool` scalar representing whether to zero the diagonal of the mask, used for the first layer of a MADE. |\n| `kernel_initializer` | Initializer function for the weight matrix. If `None` (default), weights are initialized using the `tf.glorot_random_initializer`. |\n| `reuse` | Python `bool` scalar representing whether to reuse the weights of a previous layer by the same name. |\n| `name` | Python `str` used to describe ops managed by this function. |\n| `*args` | [`tf.compat.v1.layers.dense`](../../../../tf/layers/dense) arguments. |\n| `**kwargs` | [`tf.compat.v1.layers.dense`](../../../../tf/layers/dense) keyword arguments. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Output tensor. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|-----------------------|-------------------------------------------------------------------------|\n| `NotImplementedError` | if rightmost dimension of `inputs` is unknown prior to graph execution. |\n\n\u003cbr /\u003e\n\n#### References\n\n\\[1\\]: Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE:\nMasked Autoencoder for Distribution Estimation. In *International\nConference on Machine Learning* , 2015. \u003chttps://arxiv.org/abs/1502.03509\u003e"]]