Adds a convolution3d_transpose with an optional batch normalization layer.
  View aliases
  
Main aliases
`tf.contrib.layers.convolution3d_transpose`
tf.contrib.layers.conv3d_transpose(
    inputs, num_outputs, kernel_size, stride=1, padding='SAME',
    data_format=DATA_FORMAT_NDHWC, activation_fn=tf.nn.relu, normalizer_fn=None,
    normalizer_params=None, weights_initializer=initializers.xavier_initializer(),
    weights_regularizer=None, biases_initializer=tf.zeros_initializer(),
    biases_regularizer=None, reuse=None, variables_collections=None,
    outputs_collections=None, trainable=True, scope=None
)
The function creates a variable called weights, representing the
kernel, that is convolved with the input. If batch_norm_params is None, a
second variable called 'biases' is added to the result of the operation.
Args:
  inputs: A 5-D Tensor of type float and shape [batch, depth, height,
    width, in_channels] for NDHWC data format or [batch, in_channels,
    depth, height, width] for NCDHW data format.
  num_outputs: Integer, the number of output filters.
  kernel_size: A list of length 3 holding the [kernel_depth, kernel_height,
    kernel_width] of the filters. Can be an int if both values are the same.
  stride: A list of length 3: [stride_depth, stride_height, stride_width]. Can
    be an int if both strides are the same.  Note that presently both strides
    must have the same value.
  padding: One of 'VALID' or 'SAME'.
  data_format: A string. NDHWC (default) and NCDHW are supported.
  activation_fn: Activation function. The default value is a ReLU function.
    Explicitly set it to None to skip it and maintain a linear activation.
  normalizer_fn: Normalization function to use instead of biases. If
    normalizer_fn is provided then biases_initializer and
    biases_regularizer are ignored and biases are not created nor added.
    default set to None for no normalizer function
  normalizer_params: Normalization function parameters.
  weights_initializer: An initializer for the weights.
  weights_regularizer: Optional regularizer for the weights.
  biases_initializer: An initializer for the biases. If None skip biases.
  biases_regularizer: Optional regularizer for the biases.
  reuse: Whether or not the layer and its variables should be reused. To be
    able to reuse the layer scope must be given.
  variables_collections: Optional list of collections for all the variables or
    a dictionary containing a different list of collection per variable.
  outputs_collections: Collection to add the outputs.
  trainable: Whether or not the variables should be trainable or not.
  scope: Optional scope for variable_scope.
| Returns | 
|---|
| A tensor representing the output of the operation. | 
| Raises | 
|---|
| ValueError | If 'kernel_size' is not a list of length 3. | 
| ValueError | If data_formatis neitherNDHWCnorNCDHW. | 
| ValueError | If Cdimension ofinputsis None. |