tf.contrib.layers.conv3d_transpose
Stay organized with collections
Save and categorize content based on your preferences.
Adds a convolution3d_transpose with an optional batch normalization layer.
View aliases
Main aliases
`tf.contrib.layers.convolution3d_transpose`
tf.contrib.layers.conv3d_transpose(
inputs, num_outputs, kernel_size, stride=1, padding='SAME',
data_format=DATA_FORMAT_NDHWC, activation_fn=tf.nn.relu, normalizer_fn=None,
normalizer_params=None, weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None, biases_initializer=tf.zeros_initializer(),
biases_regularizer=None, reuse=None, variables_collections=None,
outputs_collections=None, trainable=True, scope=None
)
The function creates a variable called weights
, representing the
kernel, that is convolved with the input. If batch_norm_params
is None
, a
second variable called 'biases' is added to the result of the operation.
Args:
inputs: A 5-D Tensor
of type float
and shape [batch, depth, height,
width, in_channels]
for NDHWC
data format or [batch, in_channels,
depth, height, width]
for NCDHW
data format.
num_outputs: Integer, the number of output filters.
kernel_size: A list of length 3 holding the [kernel_depth, kernel_height,
kernel_width] of the filters. Can be an int if both values are the same.
stride: A list of length 3: [stride_depth, stride_height, stride_width]. Can
be an int if both strides are the same. Note that presently both strides
must have the same value.
padding: One of 'VALID' or 'SAME'.
data_format: A string. NDHWC
(default) and NCDHW
are supported.
activation_fn: Activation function. The default value is a ReLU function.
Explicitly set it to None to skip it and maintain a linear activation.
normalizer_fn: Normalization function to use instead of biases
. If
normalizer_fn
is provided then biases_initializer
and
biases_regularizer
are ignored and biases
are not created nor added.
default set to None for no normalizer function
normalizer_params: Normalization function parameters.
weights_initializer: An initializer for the weights.
weights_regularizer: Optional regularizer for the weights.
biases_initializer: An initializer for the biases. If None skip biases.
biases_regularizer: Optional regularizer for the biases.
reuse: Whether or not the layer and its variables should be reused. To be
able to reuse the layer scope must be given.
variables_collections: Optional list of collections for all the variables or
a dictionary containing a different list of collection per variable.
outputs_collections: Collection to add the outputs.
trainable: Whether or not the variables should be trainable or not.
scope: Optional scope for variable_scope.
Returns |
A tensor representing the output of the operation.
|
Raises |
ValueError
|
If 'kernel_size' is not a list of length 3.
|
ValueError
|
If data_format is neither NDHWC nor NCDHW .
|
ValueError
|
If C dimension of inputs is None.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.layers.conv3d_transpose\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/layers/python/layers/layers.py#L1433-L1544) |\n\nAdds a convolution3d_transpose with an optional batch normalization layer.\n\n#### View aliases\n\n\n**Main aliases**\n\n\\`tf.contrib.layers.convolution3d_transpose\\`\n\n\u003cbr /\u003e\n\n tf.contrib.layers.conv3d_transpose(\n inputs, num_outputs, kernel_size, stride=1, padding='SAME',\n data_format=DATA_FORMAT_NDHWC, activation_fn=tf.nn.relu, normalizer_fn=None,\n normalizer_params=None, weights_initializer=initializers.xavier_initializer(),\n weights_regularizer=None, biases_initializer=tf.zeros_initializer(),\n biases_regularizer=None, reuse=None, variables_collections=None,\n outputs_collections=None, trainable=True, scope=None\n )\n\nThe function creates a variable called `weights`, representing the\nkernel, that is convolved with the input. If `batch_norm_params` is `None`, a\nsecond variable called 'biases' is added to the result of the operation.\nArgs:\ninputs: A 5-D `Tensor` of type `float` and shape `[batch, depth, height,\nwidth, in_channels]` for `NDHWC` data format or `[batch, in_channels,\ndepth, height, width]` for `NCDHW` data format.\nnum_outputs: Integer, the number of output filters.\nkernel_size: A list of length 3 holding the \\[kernel_depth, kernel_height,\nkernel_width\\] of the filters. Can be an int if both values are the same.\nstride: A list of length 3: \\[stride_depth, stride_height, stride_width\\]. Can\nbe an int if both strides are the same. Note that presently both strides\nmust have the same value.\npadding: One of 'VALID' or 'SAME'.\ndata_format: A string. `NDHWC` (default) and `NCDHW` are supported.\nactivation_fn: Activation function. The default value is a ReLU function.\nExplicitly set it to None to skip it and maintain a linear activation.\nnormalizer_fn: Normalization function to use instead of `biases`. If\n`normalizer_fn` is provided then `biases_initializer` and\n`biases_regularizer` are ignored and `biases` are not created nor added.\ndefault set to None for no normalizer function\nnormalizer_params: Normalization function parameters.\nweights_initializer: An initializer for the weights.\nweights_regularizer: Optional regularizer for the weights.\nbiases_initializer: An initializer for the biases. If None skip biases.\nbiases_regularizer: Optional regularizer for the biases.\nreuse: Whether or not the layer and its variables should be reused. To be\nable to reuse the layer scope must be given.\nvariables_collections: Optional list of collections for all the variables or\na dictionary containing a different list of collection per variable.\noutputs_collections: Collection to add the outputs.\ntrainable: Whether or not the variables should be trainable or not.\nscope: Optional scope for variable_scope.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A tensor representing the output of the operation. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|--------------------------------------------------|\n| `ValueError` | If 'kernel_size' is not a list of length 3. |\n| `ValueError` | If `data_format` is neither `NDHWC` nor `NCDHW`. |\n| `ValueError` | If `C` dimension of `inputs` is None. |\n\n\u003cbr /\u003e"]]