tf.contrib.layers.linear
Stay organized with collections
Save and categorize content based on your preferences.
partial(func, *args, **keywords) - new function with partial application
tf.contrib.layers.linear(
inputs, num_outputs, *, activation_fn=None, normalizer_fn=None,
normalizer_params=None, weights_initializer=._initializer at 0x7f58ea884b00>,
weights_regularizer=None,
biases_initializer=<tensorflow.python.ops.init_ops.Zeros>,
biases_regularizer=None, reuse=None, variables_collections=None,
outputs_collections=None, trainable=True, scope=None
)
of the given arguments and keywords.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.layers.linear\n\n\u003cbr /\u003e\n\npartial(func, \\*args, \\*\\*keywords) - new function with partial application \n\n tf.contrib.layers.linear(\n inputs, num_outputs, *, activation_fn=None, normalizer_fn=None,\n normalizer_params=None, weights_initializer=._initializer at 0x7f58ea884b00\u003e,\n weights_regularizer=None,\n biases_initializer=\u003ctensorflow.python.ops.init_ops.Zeros\u003e,\n biases_regularizer=None, reuse=None, variables_collections=None,\n outputs_collections=None, trainable=True, scope=None\n )\n\nof the given arguments and keywords."]]