tf.contrib.learn.InputFnOps
Stay organized with collections
Save and categorize content based on your preferences.
A return type for an input_fn (deprecated).
tf.contrib.learn.InputFnOps(
features, labels, default_inputs
)
THIS CLASS IS DEPRECATED. Please use tf.estimator.export.ServingInputReceiver
instead.
This return type is currently only supported for serving input_fn.
Training and eval input_fn should return a (features, labels)
tuple.
The expected return values are:
features: A dict of string to Tensor
or SparseTensor
, specifying the
features to be passed to the model.
labels: A Tensor
, SparseTensor
, or a dict of string to Tensor
or
SparseTensor
, specifying labels for training or eval. For serving, set
labels
to None
.
default_inputs: a dict of string to Tensor
or SparseTensor
, specifying
the input placeholders (if any) that this input_fn expects to be fed.
Typically, this is used by a serving input_fn, which expects to be fed
serialized tf.Example
protos.
Attributes |
features
|
|
labels
|
|
default_inputs
|
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.learn.InputFnOps\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/learn/python/learn/utils/input_fn_utils.py#L42-L64) |\n\nA return type for an input_fn (deprecated). \n\n tf.contrib.learn.InputFnOps(\n features, labels, default_inputs\n )\n\nTHIS CLASS IS DEPRECATED. Please use tf.estimator.export.ServingInputReceiver\ninstead.\n\nThis return type is currently only supported for serving input_fn.\nTraining and eval input_fn should return a `(features, labels)` tuple.\n\nThe expected return values are:\nfeatures: A dict of string to `Tensor` or `SparseTensor`, specifying the\nfeatures to be passed to the model.\nlabels: A `Tensor`, `SparseTensor`, or a dict of string to `Tensor` or\n`SparseTensor`, specifying labels for training or eval. For serving, set\n`labels` to `None`.\ndefault_inputs: a dict of string to `Tensor` or `SparseTensor`, specifying\nthe input placeholders (if any) that this input_fn expects to be fed.\nTypically, this is used by a serving input_fn, which expects to be fed\nserialized `tf.Example` protos.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|------------------|---------------|\n| `features` | \u003cbr /\u003e \u003cbr /\u003e |\n| `labels` | \u003cbr /\u003e \u003cbr /\u003e |\n| `default_inputs` | \u003cbr /\u003e \u003cbr /\u003e |\n\n\u003cbr /\u003e"]]