tf.contrib.metrics.count
Stay organized with collections
Save and categorize content based on your preferences.
Computes the number of examples, or sum of weights
.
tf.contrib.metrics.count(
values, weights=None, metrics_collections=None, updates_collections=None,
name=None
)
This metric keeps track of the denominator in tf.compat.v1.metrics.mean
.
When evaluating some metric (e.g. mean) on one or more subsets of the data,
this auxiliary metric is useful for keeping track of how many examples there
are in each subset.
If weights
is None
, weights default to 1. Use weights of 0 to mask values.
Args |
values
|
A Tensor of arbitrary dimensions. Only it's shape is used.
|
weights
|
Optional Tensor whose rank is either 0, or the same rank as
labels , and must be broadcastable to labels (i.e., all dimensions must
be either 1 , or the same as the corresponding labels dimension).
|
metrics_collections
|
An optional list of collections that the metric value
variable should be added to.
|
updates_collections
|
An optional list of collections that the metric update
ops should be added to.
|
name
|
An optional variable_scope name.
|
Returns |
count
|
A Tensor representing the current value of the metric.
|
update_op
|
An operation that accumulates the metric from a batch of data.
|
Raises |
ValueError
|
If weights is not None and its shape doesn't match values ,
or if either metrics_collections or updates_collections are not a list
or tuple.
|
RuntimeError
|
If eager execution is enabled.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.metrics.count\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/metrics/python/ops/metric_ops.py#L3723-L3786) |\n\nComputes the number of examples, or sum of `weights`. \n\n tf.contrib.metrics.count(\n values, weights=None, metrics_collections=None, updates_collections=None,\n name=None\n )\n\nThis metric keeps track of the denominator in [`tf.compat.v1.metrics.mean`](../../../tf/metrics/mean).\nWhen evaluating some metric (e.g. mean) on one or more subsets of the data,\nthis auxiliary metric is useful for keeping track of how many examples there\nare in each subset.\n\nIf `weights` is `None`, weights default to 1. Use weights of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `values` | A `Tensor` of arbitrary dimensions. Only it's shape is used. |\n| `weights` | Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). |\n| `metrics_collections` | An optional list of collections that the metric value variable should be added to. |\n| `updates_collections` | An optional list of collections that the metric update ops should be added to. |\n| `name` | An optional variable_scope name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-------------|----------------------------------------------------------------|\n| `count` | A `Tensor` representing the current value of the metric. |\n| `update_op` | An operation that accumulates the metric from a batch of data. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | If `weights` is not `None` and its shape doesn't match `values`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. |\n| `RuntimeError` | If eager execution is enabled. |\n\n\u003cbr /\u003e"]]