tf.contrib.metrics.precision_at_recall
Stay organized with collections
Save and categorize content based on your preferences.
Computes the precision at a given recall.
tf.contrib.metrics.precision_at_recall(
labels, predictions, target_recall, weights=None, num_thresholds=200,
metrics_collections=None, updates_collections=None, name=None
)
This function creates variables to track the true positives, false positives,
true negatives, and false negatives at a set of thresholds. Among those
thresholds where recall is at least target_recall
, precision is computed
at the threshold where recall is closest to target_recall
.
For estimation of the metric over a stream of data, the function creates an
update_op
operation that updates these variables and returns the
precision at target_recall
. update_op
increments the counts of true
positives, false positives, true negatives, and false negatives with the
weight of each case found in the predictions
and labels
.
If weights
is None
, weights default to 1. Use weights of 0 to mask values.
For additional information about precision and recall, see
http://en.wikipedia.org/wiki/Precision_and_recall
Args |
labels
|
The ground truth values, a Tensor whose dimensions must match
predictions . Will be cast to bool .
|
predictions
|
A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1] .
|
target_recall
|
A scalar value in range [0, 1] .
|
weights
|
Optional Tensor whose rank is either 0, or the same rank as
labels , and must be broadcastable to labels (i.e., all dimensions must
be either 1 , or the same as the corresponding labels dimension).
|
num_thresholds
|
The number of thresholds to use for matching the given
recall.
|
metrics_collections
|
An optional list of collections to which precision
should be added.
|
updates_collections
|
An optional list of collections to which update_op
should be added.
|
name
|
An optional variable_scope name.
|
Returns |
precision
|
A scalar Tensor representing the precision at the given
target_recall value.
|
update_op
|
An operation that increments the variables for tracking the
true positives, false positives, true negatives, and false negatives and
whose value matches precision .
|
Raises |
ValueError
|
If predictions and labels have mismatched shapes, if
weights is not None and its shape doesn't match predictions , or if
target_recall is not between 0 and 1, or if either metrics_collections
or updates_collections are not a list or tuple.
|
RuntimeError
|
If eager execution is enabled.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.metrics.precision_at_recall\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/metrics/python/ops/metric_ops.py#L2648-L2759) |\n\nComputes the precision at a given recall. \n\n tf.contrib.metrics.precision_at_recall(\n labels, predictions, target_recall, weights=None, num_thresholds=200,\n metrics_collections=None, updates_collections=None, name=None\n )\n\nThis function creates variables to track the true positives, false positives,\ntrue negatives, and false negatives at a set of thresholds. Among those\nthresholds where recall is at least `target_recall`, precision is computed\nat the threshold where recall is closest to `target_recall`.\n\nFor estimation of the metric over a stream of data, the function creates an\n`update_op` operation that updates these variables and returns the\nprecision at `target_recall`. `update_op` increments the counts of true\npositives, false positives, true negatives, and false negatives with the\nweight of each case found in the `predictions` and `labels`.\n\nIf `weights` is `None`, weights default to 1. Use weights of 0 to mask values.\n\nFor additional information about precision and recall, see\n\u003chttp://en.wikipedia.org/wiki/Precision_and_recall\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `labels` | The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. |\n| `predictions` | A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. |\n| `target_recall` | A scalar value in range `[0, 1]`. |\n| `weights` | Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). |\n| `num_thresholds` | The number of thresholds to use for matching the given recall. |\n| `metrics_collections` | An optional list of collections to which `precision` should be added. |\n| `updates_collections` | An optional list of collections to which `update_op` should be added. |\n| `name` | An optional variable_scope name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `precision` | A scalar `Tensor` representing the precision at the given `target_recall` value. |\n| `update_op` | An operation that increments the variables for tracking the true positives, false positives, true negatives, and false negatives and whose value matches `precision`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `target_recall` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. |\n| `RuntimeError` | If eager execution is enabled. |\n\n\u003cbr /\u003e"]]