tf.contrib.metrics.recall_at_precision
Stay organized with collections
Save and categorize content based on your preferences.
Computes recall
at precision
.
tf.contrib.metrics.recall_at_precision(
labels, predictions, precision, weights=None, num_thresholds=200,
metrics_collections=None, updates_collections=None, name=None, strict_mode=False
)
The recall_at_precision
function creates four local variables,
tp
(true positives), fp
(false positives) and fn
(false negatives)
that are used to compute the recall
at the given precision
value. The
threshold for the given precision
value is computed and used to evaluate the
corresponding recall
.
For estimation of the metric over a stream of data, the function creates an
update_op
operation that updates these variables and returns the
recall
. update_op
increments the tp
, fp
and fn
counts with the
weight of each case found in the predictions
and labels
.
If weights
is None
, weights default to 1. Use weights of 0 to mask values.
Args |
labels
|
The ground truth values, a Tensor whose dimensions must match
predictions . Will be cast to bool .
|
predictions
|
A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1] .
|
precision
|
A scalar value in range [0, 1] .
|
weights
|
Optional Tensor whose rank is either 0, or the same rank as
labels , and must be broadcastable to labels (i.e., all dimensions must
be either 1 , or the same as the corresponding labels dimension).
|
num_thresholds
|
The number of thresholds to use for matching the given
precision .
|
metrics_collections
|
An optional list of collections that recall should be
added to.
|
updates_collections
|
An optional list of collections that update_op should
be added to.
|
name
|
An optional variable_scope name.
|
strict_mode
|
If true and there exists a threshold where the precision is
above the target precision, return the corresponding recall at the
threshold. Otherwise, return 0. If false, find the threshold where the
precision is closest to the target precision and return the recall at the
threshold.
|
Returns |
recall
|
A scalar Tensor representing the recall at the given
precision value.
|
update_op
|
An operation that increments the tp , fp and fn
variables appropriately and whose value matches recall .
|
Raises |
ValueError
|
If predictions and labels have mismatched shapes, if
weights is not None and its shape doesn't match predictions , or if
precision is not between 0 and 1, or if either metrics_collections
or updates_collections are not a list or tuple.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.metrics.recall_at_precision\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/metrics/python/ops/metric_ops.py#L2560-L2645) |\n\nComputes `recall` at `precision`. \n\n tf.contrib.metrics.recall_at_precision(\n labels, predictions, precision, weights=None, num_thresholds=200,\n metrics_collections=None, updates_collections=None, name=None, strict_mode=False\n )\n\nThe `recall_at_precision` function creates four local variables,\n`tp` (true positives), `fp` (false positives) and `fn` (false negatives)\nthat are used to compute the `recall` at the given `precision` value. The\nthreshold for the given `precision` value is computed and used to evaluate the\ncorresponding `recall`.\n\nFor estimation of the metric over a stream of data, the function creates an\n`update_op` operation that updates these variables and returns the\n`recall`. `update_op` increments the `tp`, `fp` and `fn` counts with the\nweight of each case found in the `predictions` and `labels`.\n\nIf `weights` is `None`, weights default to 1. Use weights of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `labels` | The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. |\n| `predictions` | A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. |\n| `precision` | A scalar value in range `[0, 1]`. |\n| `weights` | Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). |\n| `num_thresholds` | The number of thresholds to use for matching the given `precision`. |\n| `metrics_collections` | An optional list of collections that `recall` should be added to. |\n| `updates_collections` | An optional list of collections that `update_op` should be added to. |\n| `name` | An optional variable_scope name. |\n| `strict_mode` | If true and there exists a threshold where the precision is above the target precision, return the corresponding recall at the threshold. Otherwise, return 0. If false, find the threshold where the precision is closest to the target precision and return the recall at the threshold. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-------------|----------------------------------------------------------------------------------------------------------------|\n| `recall` | A scalar `Tensor` representing the recall at the given `precision` value. |\n| `update_op` | An operation that increments the `tp`, `fp` and `fn` variables appropriately and whose value matches `recall`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | If `predictions` and `labels` have mismatched shapes, if `weights` is not `None` and its shape doesn't match `predictions`, or if `precision` is not between 0 and 1, or if either `metrics_collections` or `updates_collections` are not a list or tuple. |\n\n\u003cbr /\u003e"]]