The streaming_auc function creates four local variables, true_positives,
true_negatives, false_positives and false_negatives that are used to
compute the AUC. To discretize the AUC curve, a linearly spaced set of
thresholds is used to compute pairs of recall and precision values. The area
under the ROC-curve is therefore computed using the height of the recall
values by the false positive rate, while the area under the PR-curve is the
computed using the height of the precision values by the recall.
This value is ultimately returned as auc, an idempotent operation that
computes the area under a discretized curve of precision versus recall values
(computed using the aforementioned variables). The num_thresholds variable
controls the degree of discretization with larger numbers of thresholds more
closely approximating the true AUC. The quality of the approximation may vary
dramatically depending on num_thresholds.
For best results, predictions should be distributed approximately uniformly
in the range [0, 1] and not peaked around 0 or 1. The quality of the AUC
approximation may be poor if this is not the case.
For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the auc.
If weights is None, weights default to 1. Use weights of 0 to mask values.
Args
predictions
A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1].
labels
A boolTensor whose shape matches predictions.
weights
Tensor whose rank is either 0, or the same rank as labels, and
must be broadcastable to labels (i.e., all dimensions must be either
1, or the same as the corresponding labels dimension).
num_thresholds
The number of thresholds to use when discretizing the roc
curve.
metrics_collections
An optional list of collections that auc should be
added to.
updates_collections
An optional list of collections that update_op should
be added to.
curve
Specifies the name of the curve to be computed, 'ROC' [default] or
'PR' for the Precision-Recall-curve.
name
An optional variable_scope name.
Returns
auc
A scalar Tensor representing the current area-under-curve.
update_op
An operation that increments the true_positives,
true_negatives, false_positives and false_negatives variables
appropriately and whose value matches auc.
Raises
ValueError
If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn't match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.metrics.streaming_auc\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/metrics/python/ops/metric_ops.py#L968-L1041) |\n\nComputes the approximate AUC via a Riemann sum. (deprecated) \n\n tf.contrib.metrics.streaming_auc(\n predictions, labels, weights=None, num_thresholds=200, metrics_collections=None,\n updates_collections=None, curve='ROC', name=None\n )\n\n| **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Please switch to tf.metrics.auc. Note that the order of the labels and predictions arguments has been switched.\n\nThe `streaming_auc` function creates four local variables, `true_positives`,\n`true_negatives`, `false_positives` and `false_negatives` that are used to\ncompute the AUC. To discretize the AUC curve, a linearly spaced set of\nthresholds is used to compute pairs of recall and precision values. The area\nunder the ROC-curve is therefore computed using the height of the recall\nvalues by the false positive rate, while the area under the PR-curve is the\ncomputed using the height of the precision values by the recall.\n\nThis value is ultimately returned as `auc`, an idempotent operation that\ncomputes the area under a discretized curve of precision versus recall values\n(computed using the aforementioned variables). The `num_thresholds` variable\ncontrols the degree of discretization with larger numbers of thresholds more\nclosely approximating the true AUC. The quality of the approximation may vary\ndramatically depending on `num_thresholds`.\n\nFor best results, `predictions` should be distributed approximately uniformly\nin the range \\[0, 1\\] and not peaked around 0 or 1. The quality of the AUC\napproximation may be poor if this is not the case.\n\nFor estimation of the metric over a stream of data, the function creates an\n`update_op` operation that updates these variables and returns the `auc`.\n\nIf `weights` is `None`, weights default to 1. Use weights of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `predictions` | A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. |\n| `labels` | A `bool` `Tensor` whose shape matches `predictions`. |\n| `weights` | `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). |\n| `num_thresholds` | The number of thresholds to use when discretizing the roc curve. |\n| `metrics_collections` | An optional list of collections that `auc` should be added to. |\n| `updates_collections` | An optional list of collections that `update_op` should be added to. |\n| `curve` | Specifies the name of the curve to be computed, 'ROC' \\[default\\] or 'PR' for the Precision-Recall-curve. |\n| `name` | An optional variable_scope name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `auc` | A scalar `Tensor` representing the current area-under-curve. |\n| `update_op` | An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `auc`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. |\n\n\u003cbr /\u003e"]]