tf.contrib.metrics.streaming_curve_points
Stay organized with collections
Save and categorize content based on your preferences.
Computes curve (ROC or PR) values for a prespecified number of points.
tf.contrib.metrics.streaming_curve_points(
labels=None, predictions=None, weights=None, num_thresholds=200,
metrics_collections=None, updates_collections=None, curve='ROC', name=None
)
The streaming_curve_points
function creates four local variables,
true_positives
, true_negatives
, false_positives
and false_negatives
that are used to compute the curve values. To discretize the curve, a linearly
spaced set of thresholds is used to compute pairs of recall and precision
values.
For best results, predictions
should be distributed approximately uniformly
in the range [0, 1] and not peaked around 0 or 1.
For estimation of the metric over a stream of data, the function creates an
update_op
operation that updates these variables.
If weights
is None
, weights default to 1. Use weights of 0 to mask values.
Args |
labels
|
A Tensor whose shape matches predictions . Will be cast to
bool .
|
predictions
|
A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1] .
|
weights
|
Optional Tensor whose rank is either 0, or the same rank as
labels , and must be broadcastable to labels (i.e., all dimensions must
be either 1 , or the same as the corresponding labels dimension).
|
num_thresholds
|
The number of thresholds to use when discretizing the roc
curve.
|
metrics_collections
|
An optional list of collections that auc should be
added to.
|
updates_collections
|
An optional list of collections that update_op should
be added to.
|
curve
|
Specifies the name of the curve to be computed, 'ROC' [default] or
'PR' for the Precision-Recall-curve.
|
name
|
An optional variable_scope name.
|
Returns |
points
|
A Tensor with shape [num_thresholds, 2] that contains points of
the curve.
|
update_op
|
An operation that increments the true_positives ,
true_negatives , false_positives and false_negatives variables.
|
Raises |
ValueError
|
If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn't match predictions , or if
either metrics_collections or updates_collections are not a list or
tuple.
|
precision_recall_at_equal_thresholds method (to improve run time).
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.metrics.streaming_curve_points\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/metrics/python/ops/metric_ops.py#L868-L965) |\n\nComputes curve (ROC or PR) values for a prespecified number of points. \n\n tf.contrib.metrics.streaming_curve_points(\n labels=None, predictions=None, weights=None, num_thresholds=200,\n metrics_collections=None, updates_collections=None, curve='ROC', name=None\n )\n\nThe `streaming_curve_points` function creates four local variables,\n`true_positives`, `true_negatives`, `false_positives` and `false_negatives`\nthat are used to compute the curve values. To discretize the curve, a linearly\nspaced set of thresholds is used to compute pairs of recall and precision\nvalues.\n\nFor best results, `predictions` should be distributed approximately uniformly\nin the range \\[0, 1\\] and not peaked around 0 or 1.\n\nFor estimation of the metric over a stream of data, the function creates an\n`update_op` operation that updates these variables.\n\nIf `weights` is `None`, weights default to 1. Use weights of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `labels` | A `Tensor` whose shape matches `predictions`. Will be cast to `bool`. |\n| `predictions` | A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. |\n| `weights` | Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). |\n| `num_thresholds` | The number of thresholds to use when discretizing the roc curve. |\n| `metrics_collections` | An optional list of collections that `auc` should be added to. |\n| `updates_collections` | An optional list of collections that `update_op` should be added to. |\n| `curve` | Specifies the name of the curve to be computed, 'ROC' \\[default\\] or 'PR' for the Precision-Recall-curve. |\n| `name` | An optional variable_scope name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-------------|-------------------------------------------------------------------------------------------------------------------------|\n| `points` | A `Tensor` with shape \\[num_thresholds, 2\\] that contains points of the curve. |\n| `update_op` | An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. |\n\n\u003cbr /\u003e\n\nprecision_recall_at_equal_thresholds method (to improve run time)."]]