tf.contrib.metrics.streaming_false_positive_rate
Stay organized with collections
Save and categorize content based on your preferences.
Computes the false positive rate of predictions with respect to labels.
tf.contrib.metrics.streaming_false_positive_rate(
predictions, labels, weights=None, metrics_collections=None,
updates_collections=None, name=None
)
The false_positive_rate
function creates two local variables,
false_positives
and true_negatives
, that are used to compute the
false positive rate. This value is ultimately returned as
false_positive_rate
, an idempotent operation that simply divides
false_positives
by the sum of false_positives
and true_negatives
.
For estimation of the metric over a stream of data, the function creates an
update_op
operation that updates these variables and returns the
false_positive_rate
. update_op
weights each prediction by the
corresponding value in weights
.
If weights
is None
, weights default to 1. Use weights of 0 to mask values.
Args |
predictions
|
The predicted values, a Tensor of arbitrary dimensions. Will
be cast to bool .
|
labels
|
The ground truth values, a Tensor whose dimensions must match
predictions . Will be cast to bool .
|
weights
|
Optional Tensor whose rank is either 0, or the same rank as
labels , and must be broadcastable to labels (i.e., all dimensions must
be either 1 , or the same as the corresponding labels dimension).
|
metrics_collections
|
An optional list of collections that
false_positive_rate should be added to.
|
updates_collections
|
An optional list of collections that update_op should
be added to.
|
name
|
An optional variable_scope name.
|
Returns |
false_positive_rate
|
Scalar float Tensor with the value of
false_positives divided by the sum of false_positives and
true_negatives .
|
update_op
|
Operation that increments false_positives and
true_negatives variables appropriately and whose value matches
false_positive_rate .
|
Raises |
ValueError
|
If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn't match predictions , or if
either metrics_collections or updates_collections are not a list or
tuple.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.metrics.streaming_false_positive_rate\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/metrics/python/ops/metric_ops.py#L504-L589) |\n\nComputes the false positive rate of predictions with respect to labels. \n\n tf.contrib.metrics.streaming_false_positive_rate(\n predictions, labels, weights=None, metrics_collections=None,\n updates_collections=None, name=None\n )\n\nThe `false_positive_rate` function creates two local variables,\n`false_positives` and `true_negatives`, that are used to compute the\nfalse positive rate. This value is ultimately returned as\n`false_positive_rate`, an idempotent operation that simply divides\n`false_positives` by the sum of `false_positives` and `true_negatives`.\n\nFor estimation of the metric over a stream of data, the function creates an\n`update_op` operation that updates these variables and returns the\n`false_positive_rate`. `update_op` weights each prediction by the\ncorresponding value in `weights`.\n\nIf `weights` is `None`, weights default to 1. Use weights of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `predictions` | The predicted values, a `Tensor` of arbitrary dimensions. Will be cast to `bool`. |\n| `labels` | The ground truth values, a `Tensor` whose dimensions must match `predictions`. Will be cast to `bool`. |\n| `weights` | Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). |\n| `metrics_collections` | An optional list of collections that `false_positive_rate` should be added to. |\n| `updates_collections` | An optional list of collections that `update_op` should be added to. |\n| `name` | An optional variable_scope name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|\n| `false_positive_rate` | Scalar float `Tensor` with the value of `false_positives` divided by the sum of `false_positives` and `true_negatives`. |\n| `update_op` | `Operation` that increments `false_positives` and `true_negatives` variables appropriately and whose value matches `false_positive_rate`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. |\n\n\u003cbr /\u003e"]]