The streaming_precision function creates two local variables,
true_positives and false_positives, that are used to compute the
precision. This value is ultimately returned as precision, an idempotent
operation that simply divides true_positives by the sum of true_positives
and false_positives.
For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
precision. update_op weights each prediction by the corresponding value in
weights.
If weights is None, weights default to 1. Use weights of 0 to mask values.
Args
predictions
The predicted values, a boolTensor of arbitrary shape.
labels
The ground truth values, a boolTensor whose dimensions must
match predictions.
weights
Tensor whose rank is either 0, or the same rank as labels, and
must be broadcastable to labels (i.e., all dimensions must be either
1, or the same as the corresponding labels dimension).
metrics_collections
An optional list of collections that precision should
be added to.
updates_collections
An optional list of collections that update_op should
be added to.
name
An optional variable_scope name.
Returns
precision
Scalar float Tensor with the value of true_positives
divided by the sum of true_positives and false_positives.
update_op
Operation that increments true_positives and
false_positives variables appropriately and whose value matches
precision.
Raises
ValueError
If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn't match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.metrics.streaming_precision\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/metrics/python/ops/metric_ops.py#L390-L445) |\n\nComputes the precision of the predictions with respect to the labels. (deprecated) \n\n tf.contrib.metrics.streaming_precision(\n predictions, labels, weights=None, metrics_collections=None,\n updates_collections=None, name=None\n )\n\n| **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Please switch to tf.metrics.precision. Note that the order of the labels and predictions arguments has been switched.\n\nThe `streaming_precision` function creates two local variables,\n`true_positives` and `false_positives`, that are used to compute the\nprecision. This value is ultimately returned as `precision`, an idempotent\noperation that simply divides `true_positives` by the sum of `true_positives`\nand `false_positives`.\n\nFor estimation of the metric over a stream of data, the function creates an\n`update_op` operation that updates these variables and returns the\n`precision`. `update_op` weights each prediction by the corresponding value in\n`weights`.\n\nIf `weights` is `None`, weights default to 1. Use weights of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `predictions` | The predicted values, a `bool` `Tensor` of arbitrary shape. |\n| `labels` | The ground truth values, a `bool` `Tensor` whose dimensions must match `predictions`. |\n| `weights` | `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). |\n| `metrics_collections` | An optional list of collections that `precision` should be added to. |\n| `updates_collections` | An optional list of collections that `update_op` should be added to. |\n| `name` | An optional variable_scope name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-------------|---------------------------------------------------------------------------------------------------------------------------------|\n| `precision` | Scalar float `Tensor` with the value of `true_positives` divided by the sum of `true_positives` and `false_positives`. |\n| `update_op` | `Operation` that increments `true_positives` and `false_positives` variables appropriately and whose value matches `precision`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. |\n\n\u003cbr /\u003e"]]