The streaming_precision_at_thresholds function creates four local variables,
true_positives, true_negatives, false_positives and false_negatives
for various values of thresholds. precision[i] is defined as the total
weight of values in predictions above thresholds[i] whose corresponding
entry in labels is True, divided by the total weight of values in
predictions above thresholds[i] (true_positives[i] / (true_positives[i] +
false_positives[i])).
For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
precision.
If weights is None, weights default to 1. Use weights of 0 to mask values.
Args
predictions
A floating point Tensor of arbitrary shape and whose values
are in the range [0, 1].
labels
A boolTensor whose shape matches predictions.
thresholds
A python list or tuple of float thresholds in [0, 1].
weights
Tensor whose rank is either 0, or the same rank as labels, and
must be broadcastable to labels (i.e., all dimensions must be either
1, or the same as the corresponding labels dimension).
metrics_collections
An optional list of collections that precision should
be added to.
updates_collections
An optional list of collections that update_op should
be added to.
name
An optional variable_scope name.
Returns
precision
A float Tensor of shape [len(thresholds)].
update_op
An operation that increments the true_positives,
true_negatives, false_positives and false_negatives variables that
are used in the computation of precision.
Raises
ValueError
If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn't match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.metrics.streaming_precision_at_thresholds\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/metrics/python/ops/metric_ops.py#L1839-L1898) |\n\nComputes precision values for different `thresholds` on `predictions`. (deprecated) \n\n tf.contrib.metrics.streaming_precision_at_thresholds(\n predictions, labels, thresholds, weights=None, metrics_collections=None,\n updates_collections=None, name=None\n )\n\n| **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Please switch to tf.metrics.precision_at_thresholds. Note that the order of the labels and predictions arguments are switched.\n\nThe `streaming_precision_at_thresholds` function creates four local variables,\n`true_positives`, `true_negatives`, `false_positives` and `false_negatives`\nfor various values of thresholds. `precision[i]` is defined as the total\nweight of values in `predictions` above `thresholds[i]` whose corresponding\nentry in `labels` is `True`, divided by the total weight of values in\n`predictions` above `thresholds[i]` (`true_positives[i] / (true_positives[i] +\nfalse_positives[i])`).\n\nFor estimation of the metric over a stream of data, the function creates an\n`update_op` operation that updates these variables and returns the\n`precision`.\n\nIf `weights` is `None`, weights default to 1. Use weights of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `predictions` | A floating point `Tensor` of arbitrary shape and whose values are in the range `[0, 1]`. |\n| `labels` | A `bool` `Tensor` whose shape matches `predictions`. |\n| `thresholds` | A python list or tuple of float thresholds in `[0, 1]`. |\n| `weights` | `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). |\n| `metrics_collections` | An optional list of collections that `precision` should be added to. |\n| `updates_collections` | An optional list of collections that `update_op` should be added to. |\n| `name` | An optional variable_scope name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `precision` | A float `Tensor` of shape `[len(thresholds)]`. |\n| `update_op` | An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables that are used in the computation of `precision`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. |\n\n\u003cbr /\u003e"]]