The streaming_recall_at_k function creates two local variables, total and
count, that are used to compute the recall@k frequency. This frequency is
ultimately returned as recall_at_<k>: an idempotent operation that simply
divides total by count.
For estimation of the metric over a stream of data, the function creates an
update_op operation that updates these variables and returns the
recall_at_<k>. Internally, an in_top_k operation computes a Tensor with
shape [batch_size] whose elements indicate whether or not the corresponding
label is in the top kpredictions. Then update_op increments total
with the reduced sum of weights where in_top_k is True, and it
increments count with the reduced sum of weights.
If weights is None, weights default to 1. Use weights of 0 to mask values.
Args
predictions
A float Tensor of dimension [batch_size, num_classes].
labels
A Tensor of dimension [batch_size] whose type is in int32,
int64.
k
The number of top elements to look at for computing recall.
weights
Tensor whose rank is either 0, or the same rank as labels, and
must be broadcastable to labels (i.e., all dimensions must be either
1, or the same as the corresponding labels dimension).
metrics_collections
An optional list of collections that recall_at_k
should be added to.
updates_collections
An optional list of collections update_op should be
added to.
name
An optional variable_scope name.
Returns
recall_at_k
A Tensor representing the recall@k, the fraction of labels
which fall into the top k predictions.
update_op
An operation that increments the total and count variables
appropriately and whose value matches recall_at_k.
Raises
ValueError
If predictions and labels have mismatched shapes, or if
weights is not None and its shape doesn't match predictions, or if
either metrics_collections or updates_collections are not a list or
tuple.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.metrics.streaming_recall_at_k\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/metrics/python/ops/metric_ops.py#L2113-L2167) |\n\nComputes the recall@k of the predictions with respect to dense labels. (deprecated) \n\n tf.contrib.metrics.streaming_recall_at_k(\n predictions, labels, k, weights=None, metrics_collections=None,\n updates_collections=None, name=None\n )\n\n| **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed after 2016-11-08. Instructions for updating: Please use `streaming_sparse_recall_at_k`, and reshape labels from \\[batch_size\\] to \\[batch_size, 1\\].\n\nThe `streaming_recall_at_k` function creates two local variables, `total` and\n`count`, that are used to compute the recall@k frequency. This frequency is\nultimately returned as `recall_at_\u003ck\u003e`: an idempotent operation that simply\ndivides `total` by `count`.\n\nFor estimation of the metric over a stream of data, the function creates an\n`update_op` operation that updates these variables and returns the\n`recall_at_\u003ck\u003e`. Internally, an `in_top_k` operation computes a `Tensor` with\nshape \\[batch_size\\] whose elements indicate whether or not the corresponding\nlabel is in the top `k` `predictions`. Then `update_op` increments `total`\nwith the reduced sum of `weights` where `in_top_k` is `True`, and it\nincrements `count` with the reduced sum of `weights`.\n\nIf `weights` is `None`, weights default to 1. Use weights of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `predictions` | A float `Tensor` of dimension \\[batch_size, num_classes\\]. |\n| `labels` | A `Tensor` of dimension \\[batch_size\\] whose type is in `int32`, `int64`. |\n| `k` | The number of top elements to look at for computing recall. |\n| `weights` | `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). |\n| `metrics_collections` | An optional list of collections that `recall_at_k` should be added to. |\n| `updates_collections` | An optional list of collections `update_op` should be added to. |\n| `name` | An optional variable_scope name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---------------|---------------------------------------------------------------------------------------------------------------------|\n| `recall_at_k` | A `Tensor` representing the recall@k, the fraction of labels which fall into the top `k` predictions. |\n| `update_op` | An operation that increments the `total` and `count` variables appropriately and whose value matches `recall_at_k`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. |\n\n\u003cbr /\u003e"]]