View source on GitHub |
LSTMCell with pruning.
Inherits From: LSTMCell
tf.contrib.model_pruning.MaskedLSTMCell(
num_units, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None,
proj_clip=None, num_unit_shards=None, num_proj_shards=None, forget_bias=1.0,
state_is_tuple=True, activation=None, reuse=None
)
Overrides the call method of tensorflow LSTMCell and injects the weight masks. Masks are applied to only the weight matrix of the LSTM and not the projection matrix.
Args | |
---|---|
num_units
|
int, The number of units in the LSTM cell |
use_peepholes
|
bool, set True to enable diagonal/peephole connections. |
cell_clip
|
(optional) A float value, if provided the cell state is clipped by this value prior to the cell output activation. |
initializer
|
(optional) The initializer to use for the weight and projection matrices. |
num_proj
|
(optional) int, The output dimensionality for the projection matrices. If None, no projection is performed. |
proj_clip
|
(optional) A float value. If num_proj > 0 and proj_clip is
provided, then the projected values are clipped elementwise to within
[-proj_clip, proj_clip] .
|
num_unit_shards
|
Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. |
num_proj_shards
|
Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. |
forget_bias
|
Biases of the forget gate are initialized by default to 1
in order to reduce the scale of forgetting at the beginning of
the training. Must set it manually to 0.0 when restoring from
CudnnLSTM trained checkpoints.
|
state_is_tuple
|
If True, accepted and returned states are 2-tuples of
the c_state and m_state . If False, they are concatenated
along the column axis. This latter behavior will soon be deprecated.
|
activation
|
Activation function of the inner states. Default: tanh .
|
reuse
|
(optional) Python boolean describing whether to reuse variables
in an existing scope. If not True , and the existing scope already has
the given variables, an error is raised.
When restoring from CudnnLSTM-trained checkpoints, must use CudnnCompatibleLSTMCell instead. |
Attributes | |
---|---|
graph
|
DEPRECATED FUNCTION |
output_size
|
Integer or TensorShape: size of outputs produced by this cell. |
scope_name
|
|
state_size
|
size(s) of state(s) used by this cell.
It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes. |
Methods
get_initial_state
get_initial_state(
inputs=None, batch_size=None, dtype=None
)
zero_state
zero_state(
batch_size, dtype
)
Return zero-filled state tensor(s).
Args | |
---|---|
batch_size
|
int, float, or unit Tensor representing the batch size. |
dtype
|
the data type to use for the state. |
Returns | |
---|---|
If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size, state_size] filled with zeros.
If |