We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.
Unlike rnn_cell_impl.LSTMCell, this is a monolithic op and should be much
faster. The weight and bias matrices should be compatible as long as the
variable scope matches.
Args
num_units
int, The number of units in the LSTM cell.
forget_bias
float, The bias added to forget gates (see above).
cell_clip
An optional float. Defaults to -1 (no clipping).
use_peephole
Whether to use peephole connections or not.
dtype
the variable dtype of this layer. Default to tf.float32.
reuse
(optional) boolean describing whether to reuse variables in an
existing scope. If not True, and the existing scope already has the
given variables, an error is raised.
name
String, the name of the layer. Layers with the same name will
share weights, but to avoid mistakes we require reuse=True in such
cases. By default this is "lstm_cell", for variable-name compatibility
with tf.compat.v1.nn.rnn_cell.LSTMCell.
When restoring from CudnnLSTM-trained checkpoints, must use
CudnnCompatibleLSTMBlockCell instead.
Attributes
graph
DEPRECATED FUNCTION
output_size
Integer or TensorShape: size of outputs produced by this cell.
scope_name
state_size
size(s) of state(s) used by this cell.
It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.
int, float, or unit Tensor representing the batch size.
dtype
the data type to use for the state.
Returns
If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size, state_size] filled with zeros.
If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size, s] for each s in state_size.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.rnn.LSTMBlockCell\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/rnn/python/ops/lstm_ops.py#L290-L398) |\n\nBasic LSTM recurrent network cell.\n\nInherits From: [`LayerRNNCell`](../../../tf/contrib/rnn/LayerRNNCell) \n\n tf.contrib.rnn.LSTMBlockCell(\n num_units, forget_bias=1.0, cell_clip=None, use_peephole=False, dtype=None,\n reuse=None, name='lstm_cell'\n )\n\nThe implementation is based on: \u003chttp://arxiv.org/abs/1409.2329\u003e\n\nWe add `forget_bias` (default: 1) to the biases of the forget gate in order to\nreduce the scale of forgetting in the beginning of the training.\n\nUnlike `rnn_cell_impl.LSTMCell`, this is a monolithic op and should be much\nfaster. The weight and bias matrices should be compatible as long as the\nvariable scope matches.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `num_units` | int, The number of units in the LSTM cell. |\n| `forget_bias` | float, The bias added to forget gates (see above). |\n| `cell_clip` | An optional `float`. Defaults to `-1` (no clipping). |\n| `use_peephole` | Whether to use peephole connections or not. |\n| `dtype` | the variable dtype of this layer. Default to tf.float32. |\n| `reuse` | (optional) boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. |\n| `name` | String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. By default this is \"lstm_cell\", for variable-name compatibility with [`tf.compat.v1.nn.rnn_cell.LSTMCell`](../../../tf/nn/rnn_cell/LSTMCell). \u003cbr /\u003e When restoring from CudnnLSTM-trained checkpoints, must use CudnnCompatibleLSTMBlockCell instead. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `graph` | DEPRECATED FUNCTION \u003cbr /\u003e | **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Stop using this property because tf.layers layers no longer track their graph. |\n| `output_size` | Integer or TensorShape: size of outputs produced by this cell. |\n| `scope_name` | \u003cbr /\u003e |\n| `state_size` | size(s) of state(s) used by this cell. \u003cbr /\u003e It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `get_initial_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/rnn_cell_impl.py#L281-L309) \n\n get_initial_state(\n inputs=None, batch_size=None, dtype=None\n )\n\n### `zero_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/rnn_cell_impl.py#L311-L340) \n\n zero_state(\n batch_size, dtype\n )\n\nReturn zero-filled state tensor(s).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|--------------|---------------------------------------------------------|\n| `batch_size` | int, float, or unit Tensor representing the batch size. |\n| `dtype` | the data type to use for the state. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| If `state_size` is an int or TensorShape, then the return value is a `N-D` tensor of shape `[batch_size, state_size]` filled with zeros. \u003cbr /\u003e If `state_size` is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of `2-D` tensors with the shapes `[batch_size, s]` for each s in `state_size`. ||\n\n\u003cbr /\u003e"]]