This is an extremely efficient LSTM implementation, that uses a single TF op
for the entire LSTM. It should be both faster and more memory-efficient than
LSTMBlockCell defined above.
We add forget_bias (default: 1) to the biases of the forget gate in order to
reduce the scale of forgetting in the beginning of the training.
The variable naming is consistent with rnn_cell_impl.LSTMCell.
Args
num_units
int, The number of units in the LSTM cell.
forget_bias
float, The bias added to forget gates (see above).
cell_clip
clip the cell to this value. Defaults is no cell clipping.
use_peephole
Whether to use peephole connections or not.
reuse
(optional) boolean describing whether to reuse variables in an
existing scope. If not True, and the existing scope already has the
given variables, an error is raised.
dtype
the dtype of variables of this layer.
name
String, the name of the layer. Layers with the same name will
share weights, but to avoid mistakes we require reuse=True in such
cases. By default this is "lstm_cell", for variable-name compatibility
with tf.compat.v1.nn.rnn_cell.LSTMCell.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.rnn.LSTMBlockFusedCell\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/rnn/python/ops/lstm_ops.py#L540-L667) |\n\nFusedRNNCell implementation of LSTM.\n\nInherits From: [`LSTMBlockWrapper`](../../../tf/contrib/rnn/LSTMBlockWrapper) \n\n tf.contrib.rnn.LSTMBlockFusedCell(\n num_units, forget_bias=1.0, cell_clip=None, use_peephole=False, reuse=None,\n dtype=None, name='lstm_fused_cell'\n )\n\nThis is an extremely efficient LSTM implementation, that uses a single TF op\nfor the entire LSTM. It should be both faster and more memory-efficient than\nLSTMBlockCell defined above.\n\nThe implementation is based on: \u003chttp://arxiv.org/abs/1409.2329\u003e\n\nWe add forget_bias (default: 1) to the biases of the forget gate in order to\nreduce the scale of forgetting in the beginning of the training.\n\nThe variable naming is consistent with `rnn_cell_impl.LSTMCell`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `num_units` | int, The number of units in the LSTM cell. |\n| `forget_bias` | float, The bias added to forget gates (see above). |\n| `cell_clip` | clip the cell to this value. Defaults is no cell clipping. |\n| `use_peephole` | Whether to use peephole connections or not. |\n| `reuse` | (optional) boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. |\n| `dtype` | the dtype of variables of this layer. |\n| `name` | String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. By default this is \"lstm_cell\", for variable-name compatibility with [`tf.compat.v1.nn.rnn_cell.LSTMCell`](../../../tf/nn/rnn_cell/LSTMCell). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `graph` | DEPRECATED FUNCTION \u003cbr /\u003e | **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Stop using this property because tf.layers layers no longer track their graph. |\n| `num_units` | Number of units in this cell (output dimension). |\n| `scope_name` | \u003cbr /\u003e |\n\n\u003cbr /\u003e"]]