tf.contrib.timeseries.NumpyReader
Stay organized with collections
Save and categorize content based on your preferences.
A time series parser for feeding Numpy arrays to a TimeSeriesInputFn
.
tf.contrib.timeseries.NumpyReader(
data, read_num_records_hint=4096
)
Avoids embedding data in the graph as constants.
Args |
data
|
A dictionary mapping feature names to Numpy arrays, with two
possible shapes (requires keys TrainEvalFeatures.TIMES and
TrainEvalFeatures.VALUES ): Univariate; TIMES and VALUES are both
vectors of shape [series length] Multivariate; TIMES is a vector of
shape [series length], VALUES has shape [series length x number of
features]. In any case, VALUES and any exogenous features must have
their shapes prefixed by the shape of the value corresponding to the
TIMES key.
|
read_num_records_hint
|
The maximum number of samples to read at one time,
for efficiency.
|
Methods
check_dataset_size
View source
check_dataset_size(
minimum_dataset_size
)
Raise an error if the dataset is too small.
read
View source
read()
Returns a large chunk of the Numpy arrays for later re-chunking.
read_full
View source
read_full()
Returns Tensor
versions of the full Numpy arrays.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.timeseries.NumpyReader\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/timeseries/python/timeseries/input_pipeline.py#L223-L286) |\n\nA time series parser for feeding Numpy arrays to a `TimeSeriesInputFn`. \n\n tf.contrib.timeseries.NumpyReader(\n data, read_num_records_hint=4096\n )\n\nAvoids embedding data in the graph as constants.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `data` | A dictionary mapping feature names to Numpy arrays, with two possible shapes (requires keys `TrainEvalFeatures.TIMES` and `TrainEvalFeatures.VALUES`): Univariate; `TIMES` and `VALUES` are both vectors of shape \\[series length\\] Multivariate; `TIMES` is a vector of shape \\[series length\\], `VALUES` has shape \\[series length x number of features\\]. In any case, `VALUES` and any exogenous features must have their shapes prefixed by the shape of the value corresponding to the `TIMES` key. |\n| `read_num_records_hint` | The maximum number of samples to read at one time, for efficiency. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `check_dataset_size`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/timeseries/python/timeseries/input_pipeline.py#L247-L255) \n\n check_dataset_size(\n minimum_dataset_size\n )\n\nRaise an error if the dataset is too small.\n\n### `read`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/timeseries/python/timeseries/input_pipeline.py#L257-L272) \n\n read()\n\nReturns a large chunk of the Numpy arrays for later re-chunking.\n\n### `read_full`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/timeseries/python/timeseries/input_pipeline.py#L274-L286) \n\n read_full()\n\nReturns `Tensor` versions of the full Numpy arrays."]]