tf.feature_column.indicator_column
Stay organized with collections
Save and categorize content based on your preferences.
Represents multi-hot representation of given categorical column.
tf.feature_column.indicator_column(
categorical_column
)
For DNN model, indicator_column
can be used to wrap any
categorical_column_*
(e.g., to feed to DNN). Consider to Use
embedding_column
if the number of buckets/unique(values) are large.
For Wide (aka linear) model, indicator_column
is the internal
representation for categorical column when passing categorical column
directly (as any element in feature_columns) to linear_model
. See
linear_model
for details.
name = indicator_column(categorical_column_with_vocabulary_list(
'name', ['bob', 'george', 'wanda'])
columns = [name, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
dense_tensor == [[1, 0, 0]] # If "name" bytes_list is ["bob"]
dense_tensor == [[1, 0, 1]] # If "name" bytes_list is ["bob", "wanda"]
dense_tensor == [[2, 0, 0]] # If "name" bytes_list is ["bob", "bob"]
Args |
categorical_column
|
A CategoricalColumn which is created by
categorical_column_with_* or crossed_column functions.
|
Returns |
An IndicatorColumn .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.feature_column.indicator_column\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/feature_column/indicator_column) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/feature_column/feature_column_v2.py#L1870-L1902) |\n\nRepresents multi-hot representation of given categorical column.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.feature_column.indicator_column`](/api_docs/python/tf/feature_column/indicator_column), \\`tf.compat.v2.feature_column.indicator_column\\`\n\n\u003cbr /\u003e\n\n tf.feature_column.indicator_column(\n categorical_column\n )\n\n- For DNN model, `indicator_column` can be used to wrap any\n `categorical_column_*` (e.g., to feed to DNN). Consider to Use\n `embedding_column` if the number of buckets/unique(values) are large.\n\n- For Wide (aka linear) model, `indicator_column` is the internal\n representation for categorical column when passing categorical column\n directly (as any element in feature_columns) to `linear_model`. See\n `linear_model` for details.\n\n name = indicator_column(categorical_column_with_vocabulary_list(\n 'name', ['bob', 'george', 'wanda'])\n columns = [name, ...]\n features = tf.io.parse_example(..., features=make_parse_example_spec(columns))\n dense_tensor = input_layer(features, columns)\n\n dense_tensor == [[1, 0, 0]] # If \"name\" bytes_list is [\"bob\"]\n dense_tensor == [[1, 0, 1]] # If \"name\" bytes_list is [\"bob\", \"wanda\"]\n dense_tensor == [[2, 0, 0]] # If \"name\" bytes_list is [\"bob\", \"bob\"]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------------|------------------------------------------------------------------------------------------------------|\n| `categorical_column` | A `CategoricalColumn` which is created by `categorical_column_with_*` or `crossed_column` functions. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| An `IndicatorColumn`. ||\n\n\u003cbr /\u003e"]]