tf.glorot_normal_initializer
Stay organized with collections
Save and categorize content based on your preferences.
The Glorot normal initializer, also called Xavier normal initializer.
Inherits From: variance_scaling
tf.glorot_normal_initializer(
seed=None, dtype=tf.dtypes.float32
)
It draws samples from a truncated normal distribution centered on 0
with standard deviation (after truncation) given by
stddev = sqrt(2 / (fan_in + fan_out))
where fan_in
is the number
of input units in the weight tensor and fan_out
is the number of
output units in the weight tensor.
Args |
seed
|
A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed for behavior.
|
dtype
|
Default data type, used if no dtype argument is provided when
calling the initializer. Only floating point types are supported.
|
References:
Glorot et al., 2010
(pdf)
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args |
config
|
A Python dictionary. It will typically be the output of
get_config .
|
Returns |
An Initializer instance.
|
get_config
View source
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns |
A JSON-serializable Python dict.
|
__call__
View source
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
Args |
shape
|
Shape of the tensor.
|
dtype
|
Optional dtype of the tensor. If not provided use the initializer
dtype.
|
partition_info
|
Optional information about the possible partitioning of a
tensor.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.glorot_normal_initializer\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/init_ops.py#L1256-L1283) |\n\nThe Glorot normal initializer, also called Xavier normal initializer.\n\nInherits From: [`variance_scaling`](../tf/initializers/variance_scaling)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.initializers.glorot_normal`](/api_docs/python/tf/keras/initializers/GlorotNormal), [`tf.keras.initializers.glorot_normal`](/api_docs/python/tf/keras/initializers/GlorotNormal)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.glorot_normal_initializer`](/api_docs/python/tf/compat/v1/keras/initializers/glorot_normal), [`tf.compat.v1.initializers.glorot_normal`](/api_docs/python/tf/compat/v1/keras/initializers/glorot_normal), [`tf.compat.v1.keras.initializers.glorot_normal`](/api_docs/python/tf/compat/v1/keras/initializers/glorot_normal)\n\n\u003cbr /\u003e\n\n tf.glorot_normal_initializer(\n seed=None, dtype=tf.dtypes.float32\n )\n\nIt draws samples from a truncated normal distribution centered on 0\nwith standard deviation (after truncation) given by\n`stddev = sqrt(2 / (fan_in + fan_out))` where `fan_in` is the number\nof input units in the weight tensor and `fan_out` is the number of\noutput units in the weight tensor.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|-----------------------------------------------------------------------------------------------------------------------------------|\n| `seed` | A Python integer. Used to create random seeds. See [`tf.compat.v1.set_random_seed`](../tf/random/set_random_seed) for behavior. |\n| `dtype` | Default data type, used if no `dtype` argument is provided when calling the initializer. Only floating point types are supported. |\n\n\u003cbr /\u003e\n\n#### References:\n\n[Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html)\n([pdf](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf))\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/init_ops.py#L78-L97) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates an initializer from a configuration dictionary.\n\n#### Example:\n\n initializer = RandomUniform(-1, 1)\n config = initializer.get_config()\n initializer = RandomUniform.from_config(config)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|-----------------------------------------------------------------------|\n| `config` | A Python dictionary. It will typically be the output of `get_config`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| An Initializer instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/init_ops.py#L1282-L1283) \n\n get_config()\n\nReturns the configuration of the initializer as a JSON-serializable dict.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A JSON-serializable Python dict. ||\n\n\u003cbr /\u003e\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/init_ops.py#L508-L533) \n\n __call__(\n shape, dtype=None, partition_info=None\n )\n\nReturns a tensor object initialized as specified by the initializer.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|------------------|--------------------------------------------------------------------------|\n| `shape` | Shape of the tensor. |\n| `dtype` | Optional dtype of the tensor. If not provided use the initializer dtype. |\n| `partition_info` | Optional information about the possible partitioning of a tensor. |\n\n\u003cbr /\u003e"]]