This function is based on the standard SSIM implementation from:
Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image
quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing.
Details:
11x11 Gaussian filter of width 1.5 is used.
k1 = 0.01, k2 = 0.03 as in the original paper.
The image sizes must be at least 11x11 because of the filter size.
Example:
# Read images from file.im1=tf.decode_png('path/to/im1.png')im2=tf.decode_png('path/to/im2.png')# Compute SSIM over tf.uint8 Tensors.ssim1=tf.image.ssim(im1,im2,max_val=255,filter_size=11,filter_sigma=1.5,k1=0.01,k2=0.03)# Compute SSIM over tf.float32 Tensors.im1=tf.image.convert_image_dtype(im1,tf.float32)im2=tf.image.convert_image_dtype(im2,tf.float32)ssim2=tf.image.ssim(im1,im2,max_val=1.0,filter_size=11,filter_sigma=1.5,k1=0.01,k2=0.03)# ssim1 and ssim2 both have type tf.float32 and are almost equal.
Args
img1
First image batch.
img2
Second image batch.
max_val
The dynamic range of the images (i.e., the difference between the
maximum the and minimum allowed values).
filter_size
Default value 11 (size of gaussian filter).
filter_sigma
Default value 1.5 (width of gaussian filter).
k1
Default value 0.01
k2
Default value 0.03 (SSIM is less sensitivity to K2 for lower values, so
it would be better if we taken the values in range of 0< K2 <0.4).
Returns
A tensor containing an SSIM value for each image in batch. Returned SSIM
values are in range (-1, 1], when pixel values are non-negative. Returns
a tensor with shape: broadcast(img1.shape[:-3], img2.shape[:-3]).
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.image.ssim\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/image/ssim) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/image_ops_impl.py#L3216-L3288) |\n\nComputes SSIM index between img1 and img2.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.image.ssim`](/api_docs/python/tf/image/ssim), \\`tf.compat.v2.image.ssim\\`\n\n\u003cbr /\u003e\n\n tf.image.ssim(\n img1, img2, max_val, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03\n )\n\nThis function is based on the standard SSIM implementation from:\nWang, Z., Bovik, A. C., Sheikh, H. R., \\& Simoncelli, E. P. (2004). Image\nquality assessment: from error visibility to structural similarity. IEEE\ntransactions on image processing.\n| **Note:** The true SSIM is only defined on grayscale. This function does not perform any colorspace transform. (If input is already YUV, then it will compute YUV SSIM average.)\n\n#### Details:\n\n- 11x11 Gaussian filter of width 1.5 is used.\n- k1 = 0.01, k2 = 0.03 as in the original paper.\n\nThe image sizes must be at least 11x11 because of the filter size.\n\n#### Example:\n\n # Read images from file.\n im1 = tf.decode_png('path/to/im1.png')\n im2 = tf.decode_png('path/to/im2.png')\n # Compute SSIM over tf.uint8 Tensors.\n ssim1 = tf.image.ssim(im1, im2, max_val=255, filter_size=11,\n filter_sigma=1.5, k1=0.01, k2=0.03)\n\n # Compute SSIM over tf.float32 Tensors.\n im1 = tf.image.convert_image_dtype(im1, tf.float32)\n im2 = tf.image.convert_image_dtype(im2, tf.float32)\n ssim2 = tf.image.ssim(im1, im2, max_val=1.0, filter_size=11,\n filter_sigma=1.5, k1=0.01, k2=0.03)\n # ssim1 and ssim2 both have type tf.float32 and are almost equal.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|\n| `img1` | First image batch. |\n| `img2` | Second image batch. |\n| `max_val` | The dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values). |\n| `filter_size` | Default value 11 (size of gaussian filter). |\n| `filter_sigma` | Default value 1.5 (width of gaussian filter). |\n| `k1` | Default value 0.01 |\n| `k2` | Default value 0.03 (SSIM is less sensitivity to K2 for lower values, so it would be better if we taken the values in range of 0\\\u003c K2 \\\u003c0.4). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A tensor containing an SSIM value for each image in batch. Returned SSIM values are in range (-1, 1\\], when pixel values are non-negative. Returns a tensor with shape: broadcast(img1.shape\\[:-3\\], img2.shape\\[:-3\\]). ||\n\n\u003cbr /\u003e"]]