tf.keras.backend.spatial_3d_padding
Stay organized with collections
Save and categorize content based on your preferences.
Pads 5D tensor with zeros along the depth, height, width dimensions.
tf.keras.backend.spatial_3d_padding(
x, padding=((1, 1), (1, 1), (1, 1)), data_format=None
)
Pads these dimensions with respectively
"padding[0]", "padding[1]" and "padding[2]" zeros left and right.
For 'channels_last' data_format,
the 2nd, 3rd and 4th dimension will be padded.
For 'channels_first' data_format,
the 3rd, 4th and 5th dimension will be padded.
Arguments |
x
|
Tensor or variable.
|
padding
|
Tuple of 3 tuples, padding pattern.
|
data_format
|
One of channels_last or channels_first .
|
Returns |
A padded 5D tensor.
|
Raises |
ValueError
|
if data_format is neither
channels_last or channels_first .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.backend.spatial_3d_padding\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/keras/backend/spatial_3d_padding) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/keras/backend.py#L3031-L3072) |\n\nPads 5D tensor with zeros along the depth, height, width dimensions.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.backend.spatial_3d_padding`](/api_docs/python/tf/keras/backend/spatial_3d_padding), \\`tf.compat.v2.keras.backend.spatial_3d_padding\\`\n\n\u003cbr /\u003e\n\n tf.keras.backend.spatial_3d_padding(\n x, padding=((1, 1), (1, 1), (1, 1)), data_format=None\n )\n\nPads these dimensions with respectively\n\"padding\\[0\\]\", \"padding\\[1\\]\" and \"padding\\[2\\]\" zeros left and right.\n\nFor 'channels_last' data_format,\nthe 2nd, 3rd and 4th dimension will be padded.\nFor 'channels_first' data_format,\nthe 3rd, 4th and 5th dimension will be padded.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|---------------|---------------------------------------------|\n| `x` | Tensor or variable. |\n| `padding` | Tuple of 3 tuples, padding pattern. |\n| `data_format` | One of `channels_last` or `channels_first`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A padded 5D tensor. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|------------------------------------------------------------------|\n| `ValueError` | if `data_format` is neither `channels_last` or `channels_first`. |\n\n\u003cbr /\u003e"]]