tf.keras.layers.AlphaDropout
Stay organized with collections
Save and categorize content based on your preferences.
Applies Alpha Dropout to the input.
Inherits From: Layer
tf.keras.layers.AlphaDropout(
rate, noise_shape=None, seed=None, **kwargs
)
Alpha Dropout is a Dropout
that keeps mean and variance of inputs
to their original values, in order to ensure the self-normalizing property
even after this dropout.
Alpha Dropout fits well to Scaled Exponential Linear Units
by randomly setting activations to the negative saturation value.
Arguments |
rate
|
float, drop probability (as with Dropout ).
The multiplicative noise will have
standard deviation sqrt(rate / (1 - rate)) .
|
seed
|
A Python integer to use as random seed.
|
Call arguments:
inputs
: Input tensor (of any rank).
training
: Python boolean indicating whether the layer should behave in
training mode (adding dropout) or in inference mode (doing nothing).
Arbitrary. Use the keyword argument input_shape
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as input.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.layers.AlphaDropout\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/keras/layers/AlphaDropout) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/keras/layers/noise.py#L134-L206) |\n\nApplies Alpha Dropout to the input.\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.AlphaDropout`](/api_docs/python/tf/keras/layers/AlphaDropout), \\`tf.compat.v2.keras.layers.AlphaDropout\\`\n\n\u003cbr /\u003e\n\n tf.keras.layers.AlphaDropout(\n rate, noise_shape=None, seed=None, **kwargs\n )\n\nAlpha Dropout is a `Dropout` that keeps mean and variance of inputs\nto their original values, in order to ensure the self-normalizing property\neven after this dropout.\nAlpha Dropout fits well to Scaled Exponential Linear Units\nby randomly setting activations to the negative saturation value.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|--------|-------------------------------------------------------------------------------------------------------------------------------|\n| `rate` | float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. |\n| `seed` | A Python integer to use as random seed. |\n\n\u003cbr /\u003e\n\n#### Call arguments:\n\n- **`inputs`**: Input tensor (of any rank).\n- **`training`**: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing).\n\n#### Input shape:\n\nArbitrary. Use the keyword argument `input_shape`\n(tuple of integers, does not include the samples axis)\nwhen using this layer as the first layer in a model.\n\n#### Output shape:\n\nSame shape as input."]]