tf.keras.layers.Attention
Stay organized with collections
Save and categorize content based on your preferences.
Dot-product attention layer, a.k.a. Luong-style attention.
tf.keras.layers.Attention(
use_scale=False, **kwargs
)
Inputs are query
tensor of shape [batch_size, Tq, dim]
, value
tensor of
shape [batch_size, Tv, dim]
and key
tensor of shape
[batch_size, Tv, dim]
. The calculation follows the steps:
- Calculate scores with shape
[batch_size, Tq, Tv]
as a query
-key
dot
product: scores = tf.matmul(query, key, transpose_b=True)
.
- Use scores to calculate a distribution with shape
[batch_size, Tq, Tv]
: distribution = tf.nn.softmax(scores)
.
- Use
distribution
to create a linear combination of value
with
shape batch_size, Tq, dim]
:
return tf.matmul(distribution, value)
.
Args |
use_scale
|
If True , will create a scalar variable to scale the attention
scores.
|
causal
|
Boolean. Set to True for decoder self-attention. Adds a mask such
that position i cannot attend to positions j > i . This prevents the
flow of information from the future towards the past.
|
Call Arguments:
inputs
: List of the following tensors:
- query: Query
Tensor
of shape [batch_size, Tq, dim]
.
- value: Value
Tensor
of shape [batch_size, Tv, dim]
.
- key: Optional key
Tensor
of shape [batch_size, Tv, dim]
. If not
given, will use value
for both key
and value
, which is the
most common case.
mask
: List of the following tensors:
- query_mask: A boolean mask
Tensor
of shape [batch_size, Tq]
.
If given, the output will be zero at the positions where
mask==False
.
- value_mask: A boolean mask
Tensor
of shape [batch_size, Tv]
.
If given, will apply the mask such that values at positions where
mask==False
do not contribute to the result.
Output shape:
Attention outputs of shape [batch_size, Tq, dim]
.
The meaning of query
, value
and key
depend on the application. In the
case of text similarity, for example, query
is the sequence embeddings of
the first piece of text and value
is the sequence embeddings of the second
piece of text. key
is usually the same tensor as value
.
Here is a code example for using Attention
in a CNN+Attention network:
# Variable-length int sequences.
query_input = tf.keras.Input(shape=(None,), dtype='int32')
value_input = tf.keras.Input(shape=(None,), dtype='int32')
# Embedding lookup.
token_embedding = tf.keras.layers.Embedding(max_tokens, dimension)
# Query embeddings of shape [batch_size, Tq, dimension].
query_embeddings = token_embedding(query_input)
# Value embeddings of shape [batch_size, Tv, dimension].
value_embeddings = token_embedding(query_input)
# CNN layer.
cnn_layer = tf.keras.layers.Conv1D(
filters=100,
kernel_size=4,
# Use 'same' padding so outputs have the same shape as inputs.
padding='same')
# Query encoding of shape [batch_size, Tq, filters].
query_seq_encoding = cnn_layer(query_embeddings)
# Value encoding of shape [batch_size, Tv, filters].
value_seq_encoding = cnn_layer(value_embeddings)
# Query-value attention of shape [batch_size, Tq, filters].
query_value_attention_seq = tf.keras.layers.Attention()(
[query_seq_encoding, value_seq_encoding])
# Reduce over the sequence axis to produce encodings of shape
# [batch_size, filters].
query_encoding = tf.keras.layers.GlobalAveragePooling1D()(
query_seq_encoding)
query_value_attention = tf.keras.layers.GlobalAveragePooling1D()(
query_value_attention_seq)
# Concatenate query and document encodings to produce a DNN input layer.
input_layer = tf.keras.layers.Concatenate()(
[query_encoding, query_value_attention])
# Add DNN layers, and create Model.
# ...
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.layers.Attention\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/keras/layers/Attention) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/keras/layers/dense_attention.py#L187-L313) |\n\nDot-product attention layer, a.k.a. Luong-style attention.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.Attention`](/api_docs/python/tf/keras/layers/Attention), \\`tf.compat.v2.keras.layers.Attention\\`\n\n\u003cbr /\u003e\n\n tf.keras.layers.Attention(\n use_scale=False, **kwargs\n )\n\nInputs are `query` tensor of shape `[batch_size, Tq, dim]`, `value` tensor of\nshape `[batch_size, Tv, dim]` and `key` tensor of shape\n`[batch_size, Tv, dim]`. The calculation follows the steps:\n\n1. Calculate scores with shape `[batch_size, Tq, Tv]` as a `query`-`key` dot product: `scores = tf.matmul(query, key, transpose_b=True)`.\n2. Use scores to calculate a distribution with shape `[batch_size, Tq, Tv]`: `distribution = tf.nn.softmax(scores)`.\n3. Use `distribution` to create a linear combination of `value` with shape `batch_size, Tq, dim]`: `return tf.matmul(distribution, value)`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `use_scale` | If `True`, will create a scalar variable to scale the attention scores. |\n| `causal` | Boolean. Set to `True` for decoder self-attention. Adds a mask such that position `i` cannot attend to positions `j \u003e i`. This prevents the flow of information from the future towards the past. |\n\n\u003cbr /\u003e\n\n#### Call Arguments:\n\n- **`inputs`** : List of the following tensors:\n - query: Query `Tensor` of shape `[batch_size, Tq, dim]`.\n - value: Value `Tensor` of shape `[batch_size, Tv, dim]`.\n - key: Optional key `Tensor` of shape `[batch_size, Tv, dim]`. If not given, will use `value` for both `key` and `value`, which is the most common case.\n- **`mask`** : List of the following tensors:\n - query_mask: A boolean mask `Tensor` of shape `[batch_size, Tq]`. If given, the output will be zero at the positions where `mask==False`.\n - value_mask: A boolean mask `Tensor` of shape `[batch_size, Tv]`. If given, will apply the mask such that values at positions where `mask==False` do not contribute to the result.\n\n#### Output shape:\n\nAttention outputs of shape `[batch_size, Tq, dim]`.\n\nThe meaning of `query`, `value` and `key` depend on the application. In the\ncase of text similarity, for example, `query` is the sequence embeddings of\nthe first piece of text and `value` is the sequence embeddings of the second\npiece of text. `key` is usually the same tensor as `value`.\n\nHere is a code example for using `Attention` in a CNN+Attention network: \n\n # Variable-length int sequences.\n query_input = tf.keras.Input(shape=(None,), dtype='int32')\n value_input = tf.keras.Input(shape=(None,), dtype='int32')\n\n # Embedding lookup.\n token_embedding = tf.keras.layers.Embedding(max_tokens, dimension)\n # Query embeddings of shape [batch_size, Tq, dimension].\n query_embeddings = token_embedding(query_input)\n # Value embeddings of shape [batch_size, Tv, dimension].\n value_embeddings = token_embedding(query_input)\n\n # CNN layer.\n cnn_layer = tf.keras.layers.Conv1D(\n filters=100,\n kernel_size=4,\n # Use 'same' padding so outputs have the same shape as inputs.\n padding='same')\n # Query encoding of shape [batch_size, Tq, filters].\n query_seq_encoding = cnn_layer(query_embeddings)\n # Value encoding of shape [batch_size, Tv, filters].\n value_seq_encoding = cnn_layer(value_embeddings)\n\n # Query-value attention of shape [batch_size, Tq, filters].\n query_value_attention_seq = tf.keras.layers.Attention()(\n [query_seq_encoding, value_seq_encoding])\n\n # Reduce over the sequence axis to produce encodings of shape\n # [batch_size, filters].\n query_encoding = tf.keras.layers.GlobalAveragePooling1D()(\n query_seq_encoding)\n query_value_attention = tf.keras.layers.GlobalAveragePooling1D()(\n query_value_attention_seq)\n\n # Concatenate query and document encodings to produce a DNN input layer.\n input_layer = tf.keras.layers.Concatenate()(\n [query_encoding, query_value_attention])\n\n # Add DNN layers, and create Model.\n # ..."]]