tf.keras.layers.DepthwiseConv2D
Stay organized with collections
Save and categorize content based on your preferences.
Depthwise separable 2D convolution.
Inherits From: Conv2D
tf.keras.layers.DepthwiseConv2D(
kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1,
data_format=None, activation=None, use_bias=True,
depthwise_initializer='glorot_uniform', bias_initializer='zeros',
depthwise_regularizer=None, bias_regularizer=None, activity_regularizer=None,
depthwise_constraint=None, bias_constraint=None, **kwargs
)
Depthwise Separable convolutions consists in performing
just the first step in a depthwise spatial convolution
(which acts on each input channel separately).
The depth_multiplier
argument controls how many
output channels are generated per input channel in the depthwise step.
Arguments |
kernel_size
|
An integer or tuple/list of 2 integers, specifying the
height and width of the 2D convolution window.
Can be a single integer to specify the same value for
all spatial dimensions.
|
strides
|
An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any dilation_rate value != 1.
|
padding
|
one of 'valid' or 'same' (case-insensitive).
|
depth_multiplier
|
The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to filters_in * depth_multiplier .
|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first
corresponds to inputs with shape
(batch, channels, height, width) .
It defaults to the image_data_format value found in your
Keras config file at ~/.keras/keras.json .
If you never set it, then it will be 'channels_last'.
|
activation
|
Activation function to use.
If you don't specify anything, no activation is applied
(ie. 'linear' activation: a(x) = x ).
|
use_bias
|
Boolean, whether the layer uses a bias vector.
|
depthwise_initializer
|
Initializer for the depthwise kernel matrix.
|
bias_initializer
|
Initializer for the bias vector.
|
depthwise_regularizer
|
Regularizer function applied to
the depthwise kernel matrix.
|
bias_regularizer
|
Regularizer function applied to the bias vector.
|
activity_regularizer
|
Regularizer function applied to
the output of the layer (its 'activation').
|
depthwise_constraint
|
Constraint function applied to
the depthwise kernel matrix.
|
bias_constraint
|
Constraint function applied to the bias vector.
|
4D tensor with shape:
[batch, channels, rows, cols]
if data_format='channels_first'
or 4D tensor with shape:
[batch, rows, cols, channels]
if data_format='channels_last'.
Output shape:
4D tensor with shape:
[batch, filters, new_rows, new_cols]
if data_format='channels_first'
or 4D tensor with shape:
[batch, new_rows, new_cols, filters]
if data_format='channels_last'.
rows
and cols
values might have changed due to padding.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.layers.DepthwiseConv2D\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/keras/layers/DepthwiseConv2D) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/keras/layers/convolutional.py#L1686-L1877) |\n\nDepthwise separable 2D convolution.\n\nInherits From: [`Conv2D`](../../../tf/keras/layers/Conv2D)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.DepthwiseConv2D`](/api_docs/python/tf/keras/layers/DepthwiseConv2D), \\`tf.compat.v2.keras.layers.DepthwiseConv2D\\`\n\n\u003cbr /\u003e\n\n tf.keras.layers.DepthwiseConv2D(\n kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1,\n data_format=None, activation=None, use_bias=True,\n depthwise_initializer='glorot_uniform', bias_initializer='zeros',\n depthwise_regularizer=None, bias_regularizer=None, activity_regularizer=None,\n depthwise_constraint=None, bias_constraint=None, **kwargs\n )\n\nDepthwise Separable convolutions consists in performing\njust the first step in a depthwise spatial convolution\n(which acts on each input channel separately).\nThe `depth_multiplier` argument controls how many\noutput channels are generated per input channel in the depthwise step.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `kernel_size` | An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. |\n| `strides` | An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. |\n| `padding` | one of `'valid'` or `'same'` (case-insensitive). |\n| `depth_multiplier` | The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `filters_in * depth_multiplier`. |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be 'channels_last'. |\n| `activation` | Activation function to use. If you don't specify anything, no activation is applied (ie. 'linear' activation: `a(x) = x`). |\n| `use_bias` | Boolean, whether the layer uses a bias vector. |\n| `depthwise_initializer` | Initializer for the depthwise kernel matrix. |\n| `bias_initializer` | Initializer for the bias vector. |\n| `depthwise_regularizer` | Regularizer function applied to the depthwise kernel matrix. |\n| `bias_regularizer` | Regularizer function applied to the bias vector. |\n| `activity_regularizer` | Regularizer function applied to the output of the layer (its 'activation'). |\n| `depthwise_constraint` | Constraint function applied to the depthwise kernel matrix. |\n| `bias_constraint` | Constraint function applied to the bias vector. |\n\n\u003cbr /\u003e\n\n#### Input shape:\n\n4D tensor with shape:\n`[batch, channels, rows, cols]` if data_format='channels_first'\nor 4D tensor with shape:\n`[batch, rows, cols, channels]` if data_format='channels_last'.\n\n#### Output shape:\n\n4D tensor with shape:\n`[batch, filters, new_rows, new_cols]` if data_format='channels_first'\nor 4D tensor with shape:\n`[batch, new_rows, new_cols, filters]` if data_format='channels_last'.\n`rows` and `cols` values might have changed due to padding."]]