tf.keras.layers.UpSampling2D
Stay organized with collections
Save and categorize content based on your preferences.
Upsampling layer for 2D inputs.
Inherits From: Layer
tf.keras.layers.UpSampling2D(
size=(2, 2), data_format=None, interpolation='nearest', **kwargs
)
Repeats the rows and columns of the data
by size[0]
and size[1]
respectively.
Arguments |
size
|
Int, or tuple of 2 integers.
The upsampling factors for rows and columns.
|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first
corresponds to inputs with shape
(batch, channels, height, width) .
It defaults to the image_data_format value found in your
Keras config file at ~/.keras/keras.json .
If you never set it, then it will be "channels_last".
|
interpolation
|
A string, one of nearest or bilinear .
|
4D tensor with shape:
- If
data_format
is "channels_last"
:
(batch, rows, cols, channels)
- If
data_format
is "channels_first"
:
(batch, channels, rows, cols)
Output shape:
4D tensor with shape:
- If
data_format
is "channels_last"
:
(batch, upsampled_rows, upsampled_cols, channels)
- If
data_format
is "channels_first"
:
(batch, channels, upsampled_rows, upsampled_cols)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.layers.UpSampling2D\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/keras/layers/UpSampling2D) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/keras/layers/convolutional.py#L1917-L1996) |\n\nUpsampling layer for 2D inputs.\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.UpSampling2D`](/api_docs/python/tf/keras/layers/UpSampling2D), \\`tf.compat.v2.keras.layers.UpSampling2D\\`\n\n\u003cbr /\u003e\n\n tf.keras.layers.UpSampling2D(\n size=(2, 2), data_format=None, interpolation='nearest', **kwargs\n )\n\nRepeats the rows and columns of the data\nby `size[0]` and `size[1]` respectively.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `size` | Int, or tuple of 2 integers. The upsampling factors for rows and columns. |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be \"channels_last\". |\n| `interpolation` | A string, one of `nearest` or `bilinear`. |\n\n\u003cbr /\u003e\n\n#### Input shape:\n\n4D tensor with shape:\n\n- If `data_format` is `\"channels_last\"`: `(batch, rows, cols, channels)`\n- If `data_format` is `\"channels_first\"`: `(batch, channels, rows, cols)`\n\n#### Output shape:\n\n4D tensor with shape:\n\n- If `data_format` is `\"channels_last\"`: `(batch, upsampled_rows, upsampled_cols, channels)`\n- If `data_format` is `\"channels_first\"`: `(batch, channels, upsampled_rows, upsampled_cols)`"]]