TensorFlow 2 version | View source on GitHub |
Computes the mean absolute error between the labels and predictions.
tf.keras.metrics.MeanAbsoluteError(
name='mean_absolute_error', dtype=None
)
For example, if y_true
is [0., 0., 1., 1.], and y_pred
is [1., 1., 1., 0.]
the mean absolute error is 3/4 (0.75).
Usage:
m = tf.keras.metrics.MeanAbsoluteError()
m.update_state([0., 0., 1., 1.], [1., 1., 1., 0.])
print('Final result: ', m.result().numpy()) # Final result: 0.75
Usage with tf.keras API:
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', metrics=[tf.keras.metrics.MeanAbsoluteError()])
Args | |
---|---|
fn
|
The metric function to wrap, with signature
fn(y_true, y_pred, **kwargs) .
|
name
|
(Optional) string name of the metric instance. |
dtype
|
(Optional) data type of the metric result. |
**kwargs
|
The keyword arguments that are passed on to fn .
|
Methods
reset_states
reset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
y_true
and y_pred
should have the same shape.
Args | |
---|---|
y_true
|
The ground truth values. |
y_pred
|
The predicted values. |
sample_weight
|
Optional weighting of each example. Defaults to 1. Can be
a Tensor whose rank is either 0, or the same rank as y_true ,
and must be broadcastable to y_true .
|
Returns | |
---|---|
Update op. |