This layer implements the operation:
outputs = activation(inputs * kernel + bias)
where activation is the activation function passed as the activation
argument (if not None), kernel is a weights matrix created by the layer,
and bias is a bias vector created by the layer
(only if use_bias is True).
Arguments
inputs
Tensor input.
units
Integer or Long, dimensionality of the output space.
activation
Activation function (callable). Set it to None to maintain a
linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
Initializer function for the weight matrix.
If None (default), weights are initialized using the default
initializer used by tf.compat.v1.get_variable.
bias_initializer
Initializer function for the bias.
kernel_regularizer
Regularizer function for the weight matrix.
bias_regularizer
Regularizer function for the bias.
activity_regularizer
Regularizer function for the output.
kernel_constraint
An optional projection function to be applied to the
kernel after being updated by an Optimizer (e.g. used to implement
norm constraints or value constraints for layer weights). The function
must take as input the unprojected variable and must return the
projected variable (which must have the same shape). Constraints are
not safe to use when doing asynchronous distributed training.
bias_constraint
An optional projection function to be applied to the
bias after being updated by an Optimizer.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.layers.dense\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/layers/core.py#L113-L187) |\n\nFunctional interface for the densely-connected layer. (deprecated)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.layers.dense`](/api_docs/python/tf/compat/v1/layers/dense)\n\n\u003cbr /\u003e\n\n tf.layers.dense(\n inputs, units, activation=None, use_bias=True, kernel_initializer=None,\n bias_initializer=tf.zeros_initializer(), kernel_regularizer=None,\n bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,\n bias_constraint=None, trainable=True, name=None, reuse=None\n )\n\n| **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use keras.layers.Dense instead.\n\nThis layer implements the operation:\n`outputs = activation(inputs * kernel + bias)`\nwhere `activation` is the activation function passed as the `activation`\nargument (if not `None`), `kernel` is a weights matrix created by the layer,\nand `bias` is a bias vector created by the layer\n(only if `use_bias` is `True`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `inputs` | Tensor input. |\n| `units` | Integer or Long, dimensionality of the output space. |\n| `activation` | Activation function (callable). Set it to None to maintain a linear activation. |\n| `use_bias` | Boolean, whether the layer uses a bias. |\n| `kernel_initializer` | Initializer function for the weight matrix. If `None` (default), weights are initialized using the default initializer used by [`tf.compat.v1.get_variable`](../../tf/get_variable). |\n| `bias_initializer` | Initializer function for the bias. |\n| `kernel_regularizer` | Regularizer function for the weight matrix. |\n| `bias_regularizer` | Regularizer function for the bias. |\n| `activity_regularizer` | Regularizer function for the output. |\n| `kernel_constraint` | An optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. |\n| `bias_constraint` | An optional projection function to be applied to the bias after being updated by an `Optimizer`. |\n| `trainable` | Boolean, if `True` also add variables to the graph collection [`GraphKeys.TRAINABLE_VARIABLES`](../../tf/GraphKeys#TRAINABLE_VARIABLES) (see [`tf.Variable`](../../tf/Variable)). |\n| `name` | String, the name of the layer. |\n| `reuse` | Boolean, whether to reuse the weights of a previous layer by the same name. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Output tensor the same shape as `inputs` except the last dimension is of size `units`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|--------------------------------|\n| `ValueError` | if eager execution is enabled. |\n\n\u003cbr /\u003e"]]