|  TensorFlow 2 version |  View source on GitHub | 
Perturb a LinearOperator with a rank K update.
Inherits From: LinearOperator
tf.linalg.LinearOperatorLowRankUpdate(
    base_operator, u, diag_update=None, v=None, is_diag_update_positive=None,
    is_non_singular=None, is_self_adjoint=None, is_positive_definite=None,
    is_square=None, name='LinearOperatorLowRankUpdate'
)
This operator acts like a [batch] matrix A with shape
[B1,...,Bb, M, N] for some b >= 0.  The first b indices index a
batch member.  For every batch index (i1,...,ib), A[i1,...,ib, : :] is
an M x N matrix.
LinearOperatorLowRankUpdate represents A = L + U D V^H, where
L, is a LinearOperator representing [batch] M x N matrices
U, is a [batch] M x K matrix.  Typically K << M.
D, is a [batch] K x K matrix.
V, is a [batch] N x K matrix.  Typically K << N.
V^H is the Hermitian transpose (adjoint) of V.
If M = N, determinants and solves are done using the matrix determinant
lemma and Woodbury identities, and thus require L and D to be non-singular.
Solves and determinants will be attempted unless the "is_non_singular" property of L and D is False.
In the event that L and D are positive-definite, and U = V, solves and determinants can be done using a Cholesky factorization.
# Create a 3 x 3 diagonal linear operator.
diag_operator = LinearOperatorDiag(
    diag_update=[1., 2., 3.], is_non_singular=True, is_self_adjoint=True,
    is_positive_definite=True)
# Perturb with a rank 2 perturbation
operator = LinearOperatorLowRankUpdate(
    operator=diag_operator,
    u=[[1., 2.], [-1., 3.], [0., 0.]],
    diag_update=[11., 12.],
    v=[[1., 2.], [-1., 3.], [10., 10.]])
operator.shape
==> [3, 3]
operator.log_abs_determinant()
==> scalar Tensor
x = ... Shape [3, 4] Tensor
operator.matmul(x)
==> Shape [3, 4] Tensor
Shape compatibility
This operator acts on [batch] matrix with compatible shape.
x is a batch matrix with compatible shape for matmul and solve if
operator.shape = [B1,...,Bb] + [M, N],  with b >= 0
x.shape =        [B1,...,Bb] + [N, R],  with R >= 0.
Performance
Suppose operator is a LinearOperatorLowRankUpdate of shape [M, N],
made from a rank K update of base_operator which performs .matmul(x) on
x having x.shape = [N, R] with O(L_matmul*N*R) complexity (and similarly
for solve, determinant.  Then, if x.shape = [N, R],
- operator.matmul(x)is- O(L_matmul*N*R + K*N*R)
and if M = N,
- operator.solve(x)is- O(L_matmul*N*R + N*K*R + K^2*R + K^3)
- operator.determinant()is- O(L_determinant + L_solve*N*K + K^2*N + K^3)
If instead operator and x have shape [B1,...,Bb, M, N] and
[B1,...,Bb, N, R], every operation increases in complexity by B1*...*Bb.
Matrix property hints
This LinearOperator is initialized with boolean flags of the form is_X,
for X = non_singular, self_adjoint, positive_definite,
diag_update_positive and square. These have the following meaning:
- If is_X == True, callers should expect the operator to have the propertyX. This is a promise that should be fulfilled, but is not a runtime assert. For example, finite floating point precision may result in these promises being violated.
- If is_X == False, callers should expect the operator to not haveX.
- If is_X == None(the default), callers should have no expectation either way.
| Args | |
|---|---|
| base_operator | Shape [B1,...,Bb, M, N]. | 
| u | Shape [B1,...,Bb, M, K]Tensorof samedtypeasbase_operator.
This isUabove. | 
| diag_update | Optional shape [B1,...,Bb, K]Tensorwith samedtypeasbase_operator.  This is the diagonal ofDabove.
Defaults toDbeing the identity operator. | 
| v | Optional Tensorof samedtypeasuand shape[B1,...,Bb, N, K]Defaults tov = u, in which case the perturbation is symmetric.
IfM != N, thenvmust be set since the perturbation is not square. | 
| is_diag_update_positive | Python bool.
IfTrue, expectdiag_update > 0. | 
| is_non_singular | Expect that this operator is non-singular.
Default is None, unlessis_positive_definiteis auto-set to beTrue(see below). | 
| is_self_adjoint | Expect that this operator is equal to its hermitian
transpose.  Default is None, unlessbase_operatoris self-adjoint
andv = None(meaningu=v), in which case this defaults toTrue. | 
| is_positive_definite | Expect that this operator is positive definite.
Default is None, unlessbase_operatoris positive-definitev = None(meaningu=v), andis_diag_update_positive, in which case
this defaults toTrue.
Note that we say an operator is positive definite when the quadratic
formx^H A xhas positive real part for all nonzerox. | 
| is_square | Expect that this operator acts like square [batch] matrices. | 
| name | A name for this LinearOperator. | 
| Raises | |
|---|---|
| ValueError | If is_Xflags are set in an inconsistent way. | 
| Attributes | |
|---|---|
| H | Returns the adjoint of the current LinearOperator.Given  | 
| base_operator | If this operator is A = L + U D V^H, this is theL. | 
| batch_shape | TensorShapeof batch dimensions of thisLinearOperator.If this operator acts like the batch matrix  | 
| diag_operator | If this operator is A = L + U D V^H, this isD. | 
| diag_update | If this operator is A = L + U D V^H, this is the diagonal ofD. | 
| domain_dimension | Dimension (in the sense of vector spaces) of the domain of this operator. If this operator acts like the batch matrix  | 
| dtype | The DTypeofTensors handled by thisLinearOperator. | 
| graph_parents | List of graph dependencies of this LinearOperator. | 
| is_diag_update_positive | If this operator is A = L + U D V^H, this hintsD > 0elementwise. | 
| is_non_singular | |
| is_positive_definite | |
| is_self_adjoint | |
| is_square | Return True/Falsedepending on if this operator is square. | 
| range_dimension | Dimension (in the sense of vector spaces) of the range of this operator. If this operator acts like the batch matrix  | 
| shape | TensorShapeof thisLinearOperator.If this operator acts like the batch matrix  | 
| tensor_rank | Rank (in the sense of tensors) of matrix corresponding to this operator. If this operator acts like the batch matrix  | 
| u | If this operator is A = L + U D V^H, this is theU. | 
| v | If this operator is A = L + U D V^H, this is theV. | 
Methods
add_to_tensor
add_to_tensor(
    x, name='add_to_tensor'
)
Add matrix represented by this operator to x.  Equivalent to A + x.
| Args | |
|---|---|
| x | Tensorwith samedtypeand shape broadcastable toself.shape. | 
| name | A name to give this Op. | 
| Returns | |
|---|---|
| A Tensorwith broadcast shape and samedtypeasself. | 
adjoint
adjoint(
    name='adjoint'
)
Returns the adjoint of the current LinearOperator.
Given A representing this LinearOperator, return A*.
Note that calling self.adjoint() and self.H are equivalent.
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| LinearOperatorwhich represents the adjoint of thisLinearOperator. | 
assert_non_singular
assert_non_singular(
    name='assert_non_singular'
)
Returns an Op that asserts this operator is non singular.
This operator is considered non-singular if
ConditionNumber < max{100, range_dimension, domain_dimension} * eps,
eps := np.finfo(self.dtype.as_numpy_dtype).eps
| Args | |
|---|---|
| name | A string name to prepend to created ops. | 
| Returns | |
|---|---|
| An AssertOp, that, when run, will raise anInvalidArgumentErrorif
the operator is singular. | 
assert_positive_definite
assert_positive_definite(
    name='assert_positive_definite'
)
Returns an Op that asserts this operator is positive definite.
Here, positive definite means that the quadratic form x^H A x has positive
real part for all nonzero x.  Note that we do not require the operator to
be self-adjoint to be positive definite.
| Args | |
|---|---|
| name | A name to give this Op. | 
| Returns | |
|---|---|
| An AssertOp, that, when run, will raise anInvalidArgumentErrorif
the operator is not positive definite. | 
assert_self_adjoint
assert_self_adjoint(
    name='assert_self_adjoint'
)
Returns an Op that asserts this operator is self-adjoint.
Here we check that this operator is exactly equal to its hermitian transpose.
| Args | |
|---|---|
| name | A string name to prepend to created ops. | 
| Returns | |
|---|---|
| An AssertOp, that, when run, will raise anInvalidArgumentErrorif
the operator is not self-adjoint. | 
batch_shape_tensor
batch_shape_tensor(
    name='batch_shape_tensor'
)
Shape of batch dimensions of this operator, determined at runtime.
If this operator acts like the batch matrix A with
A.shape = [B1,...,Bb, M, N], then this returns a Tensor holding
[B1,...,Bb].
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| int32Tensor | 
cholesky
cholesky(
    name='cholesky'
)
Returns a Cholesky factor as a LinearOperator.
Given A representing this LinearOperator, if A is positive definite
self-adjoint, return L, where A = L L^T, i.e. the cholesky
decomposition.
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| LinearOperatorwhich represents the lower triangular matrix
in the Cholesky decomposition. | 
| Raises | |
|---|---|
| ValueError | When the LinearOperatoris not hinted to be positive
definite and self adjoint. | 
determinant
determinant(
    name='det'
)
Determinant for every batch member.
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| Tensorwith shapeself.batch_shapeand samedtypeasself. | 
| Raises | |
|---|---|
| NotImplementedError | If self.is_squareisFalse. | 
diag_part
diag_part(
    name='diag_part'
)
Efficiently get the [batch] diagonal part of this operator.
If this operator has shape [B1,...,Bb, M, N], this returns a
Tensor diagonal, of shape [B1,...,Bb, min(M, N)], where
diagonal[b1,...,bb, i] = self.to_dense()[b1,...,bb, i, i].
my_operator = LinearOperatorDiag([1., 2.])
# Efficiently get the diagonal
my_operator.diag_part()
==> [1., 2.]
# Equivalent, but inefficient method
tf.linalg.diag_part(my_operator.to_dense())
==> [1., 2.]
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| diag_part | A Tensorof samedtypeas self. | 
domain_dimension_tensor
domain_dimension_tensor(
    name='domain_dimension_tensor'
)
Dimension (in the sense of vector spaces) of the domain of this operator.
Determined at runtime.
If this operator acts like the batch matrix A with
A.shape = [B1,...,Bb, M, N], then this returns N.
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| int32Tensor | 
inverse
inverse(
    name='inverse'
)
Returns the Inverse of this LinearOperator.
Given A representing this LinearOperator, return a LinearOperator
representing A^-1.
| Args | |
|---|---|
| name | A name scope to use for ops added by this method. | 
| Returns | |
|---|---|
| LinearOperatorrepresenting inverse of this matrix. | 
| Raises | |
|---|---|
| ValueError | When the LinearOperatoris not hinted to benon_singular. | 
log_abs_determinant
log_abs_determinant(
    name='log_abs_det'
)
Log absolute value of determinant for every batch member.
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| Tensorwith shapeself.batch_shapeand samedtypeasself. | 
| Raises | |
|---|---|
| NotImplementedError | If self.is_squareisFalse. | 
matmul
matmul(
    x, adjoint=False, adjoint_arg=False, name='matmul'
)
Transform [batch] matrix x with left multiplication:  x --> Ax.
# Make an operator acting like batch matrix A.  Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]
X = ... # shape [..., N, R], batch matrix, R > 0.
Y = operator.matmul(X)
Y.shape
==> [..., M, R]
Y[..., :, r] = sum_j A[..., :, j] X[j, r]
| Args | |
|---|---|
| x | LinearOperatororTensorwith compatible shape and samedtypeasself. See class docstring for definition of compatibility. | 
| adjoint | Python bool.  IfTrue, left multiply by the adjoint:A^H x. | 
| adjoint_arg | Python bool.  IfTrue, computeA x^Hwherex^His
the hermitian transpose (transposition and complex conjugation). | 
| name | A name for this Op. | 
| Returns | |
|---|---|
| A LinearOperatororTensorwith shape[..., M, R]and samedtypeasself. | 
matvec
matvec(
    x, adjoint=False, name='matvec'
)
Transform [batch] vector x with left multiplication:  x --> Ax.
# Make an operator acting like batch matric A.  Assume A.shape = [..., M, N]
operator = LinearOperator(...)
X = ... # shape [..., N], batch vector
Y = operator.matvec(X)
Y.shape
==> [..., M]
Y[..., :] = sum_j A[..., :, j] X[..., j]
| Args | |
|---|---|
| x | Tensorwith compatible shape and samedtypeasself.xis treated as a [batch] vector meaning for every set of leading
dimensions, the last dimension defines a vector.
See class docstring for definition of compatibility. | 
| adjoint | Python bool.  IfTrue, left multiply by the adjoint:A^H x. | 
| name | A name for this Op. | 
| Returns | |
|---|---|
| A Tensorwith shape[..., M]and samedtypeasself. | 
range_dimension_tensor
range_dimension_tensor(
    name='range_dimension_tensor'
)
Dimension (in the sense of vector spaces) of the range of this operator.
Determined at runtime.
If this operator acts like the batch matrix A with
A.shape = [B1,...,Bb, M, N], then this returns M.
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| int32Tensor | 
shape_tensor
shape_tensor(
    name='shape_tensor'
)
Shape of this LinearOperator, determined at runtime.
If this operator acts like the batch matrix A with
A.shape = [B1,...,Bb, M, N], then this returns a Tensor holding
[B1,...,Bb, M, N], equivalent to tf.shape(A).
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| int32Tensor | 
solve
solve(
    rhs, adjoint=False, adjoint_arg=False, name='solve'
)
Solve (exact or approx) R (batch) systems of equations: A X = rhs.
The returned Tensor will be close to an exact solution if A is well
conditioned. Otherwise closeness will vary. See class docstring for details.
Examples:
# Make an operator acting like batch matrix A.  Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]
# Solve R > 0 linear systems for every member of the batch.
RHS = ... # shape [..., M, R]
X = operator.solve(RHS)
# X[..., :, r] is the solution to the r'th linear system
# sum_j A[..., :, j] X[..., j, r] = RHS[..., :, r]
operator.matmul(X)
==> RHS
| Args | |
|---|---|
| rhs | Tensorwith samedtypeas this operator and compatible shape.rhsis treated like a [batch] matrix meaning for every set of leading
dimensions, the last two dimensions defines a matrix.
See class docstring for definition of compatibility. | 
| adjoint | Python bool.  IfTrue, solve the system involving the adjoint
of thisLinearOperator:A^H X = rhs. | 
| adjoint_arg | Python bool.  IfTrue, solveA X = rhs^Hwhererhs^His the hermitian transpose (transposition and complex conjugation). | 
| name | A name scope to use for ops added by this method. | 
| Returns | |
|---|---|
| Tensorwith shape[...,N, R]and samedtypeasrhs. | 
| Raises | |
|---|---|
| NotImplementedError | If self.is_non_singularoris_squareis False. | 
solvevec
solvevec(
    rhs, adjoint=False, name='solve'
)
Solve single equation with best effort: A X = rhs.
The returned Tensor will be close to an exact solution if A is well
conditioned. Otherwise closeness will vary. See class docstring for details.
Examples:
# Make an operator acting like batch matrix A.  Assume A.shape = [..., M, N]
operator = LinearOperator(...)
operator.shape = [..., M, N]
# Solve one linear system for every member of the batch.
RHS = ... # shape [..., M]
X = operator.solvevec(RHS)
# X is the solution to the linear system
# sum_j A[..., :, j] X[..., j] = RHS[..., :]
operator.matvec(X)
==> RHS
| Args | |
|---|---|
| rhs | Tensorwith samedtypeas this operator.rhsis treated like a [batch] vector meaning for every set of leading
dimensions, the last dimension defines a vector.  See class docstring
for definition of compatibility regarding batch dimensions. | 
| adjoint | Python bool.  IfTrue, solve the system involving the adjoint
of thisLinearOperator:A^H X = rhs. | 
| name | A name scope to use for ops added by this method. | 
| Returns | |
|---|---|
| Tensorwith shape[...,N]and samedtypeasrhs. | 
| Raises | |
|---|---|
| NotImplementedError | If self.is_non_singularoris_squareis False. | 
tensor_rank_tensor
tensor_rank_tensor(
    name='tensor_rank_tensor'
)
Rank (in the sense of tensors) of matrix corresponding to this operator.
If this operator acts like the batch matrix A with
A.shape = [B1,...,Bb, M, N], then this returns b + 2.
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| int32Tensor, determined at runtime. | 
to_dense
to_dense(
    name='to_dense'
)
Return a dense (batch) matrix representing this operator.
trace
trace(
    name='trace'
)
Trace of the linear operator, equal to sum of self.diag_part().
If the operator is square, this is also the sum of the eigenvalues.
| Args | |
|---|---|
| name | A name for this Op. | 
| Returns | |
|---|---|
| Shape [B1,...,Bb]Tensorof samedtypeasself. |