|  TensorFlow 2 version |  View source on GitHub | 
Compute the Moore-Penrose pseudo-inverse of one or more matrices.
tf.linalg.pinv(
    a, rcond=None, validate_args=False, name=None
)
Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all large singular values.
The pseudo-inverse of a matrix A, is defined as: 'the matrix that 'solves'
[the least-squares problem] A @ x = b,' i.e., if x_hat is a solution, then
A_pinv is the matrix such that x_hat = A_pinv @ b. It can be shown that if
U @ Sigma @ V.T = A is the singular value decomposition of A, then
A_pinv = V @ inv(Sigma) U^T. [(Strang, 1980)][1]
This function is analogous to numpy.linalg.pinv.
It differs only in default value of rcond. In numpy.linalg.pinv, the
default rcond is 1e-15. Here the default is
10. * max(num_rows, num_cols) * np.finfo(dtype).eps.
| Args | |
|---|---|
| a | (Batch of) float-like matrix-shapedTensor(s) which are to be
pseudo-inverted. | 
| rcond | Tensorof small singular value cutoffs.  Singular values smaller
(in modulus) thanrcond* largest_singular_value (again, in modulus) are
set to zero. Must broadcast againsttf.shape(a)[:-2].
Default value:10. * max(num_rows, num_cols) * np.finfo(a.dtype).eps. | 
| validate_args | When True, additional assertions might be embedded in the
graph.
Default value:False(i.e., no graph assertions are added). | 
| name | Python strprefixed to ops created by this function.
Default value: 'pinv'. | 
| Returns | |
|---|---|
| a_pinv | (Batch of) pseudo-inverse of input a. Has same shape asaexcept
rightmost two dimensions are transposed. | 
| Raises | |
|---|---|
| TypeError | if input adoes not havefloat-likedtype. | 
| ValueError | if input ahas fewer than 2 dimensions. | 
Examples
import tensorflow as tf
import tensorflow_probability as tfp
a = tf.constant([[1.,  0.4,  0.5],
                 [0.4, 0.2,  0.25],
                 [0.5, 0.25, 0.35]])
tf.matmul(tf.linalg..pinv(a), a)
# ==> array([[1., 0., 0.],
             [0., 1., 0.],
             [0., 0., 1.]], dtype=float32)
a = tf.constant([[1.,  0.4,  0.5,  1.],
                 [0.4, 0.2,  0.25, 2.],
                 [0.5, 0.25, 0.35, 3.]])
tf.matmul(tf.linalg..pinv(a), a)
# ==> array([[ 0.76,  0.37,  0.21, -0.02],
             [ 0.37,  0.43, -0.33,  0.02],
             [ 0.21, -0.33,  0.81,  0.01],
             [-0.02,  0.02,  0.01,  1.  ]], dtype=float32)
References
[1]: G. Strang. 'Linear Algebra and Its Applications, 2nd Ed.' Academic Press, Inc., 1980, pp. 139-142.