(optional) Python boolean describing whether to reuse variables in an
existing scope. If not True, and the existing scope already has the
given variables, an error is raised.
kernel_initializer
(optional) The initializer to use for the weight and
projection matrices.
bias_initializer
(optional) The initializer to use for the bias.
name
String, the name of the layer. Layers with the same name will share
weights, but to avoid mistakes we require reuse=True in such cases.
dtype
Default dtype of the layer (default of None means use the type of
the first input). Required when build is called before call.
**kwargs
Dict, keyword named properties for common layer attributes, like
trainable etc when constructing the cell from configs of get_config().
Attributes
graph
DEPRECATED FUNCTION
output_size
Integer or TensorShape: size of outputs produced by this cell.
scope_name
state_size
size(s) of state(s) used by this cell.
It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.
int, float, or unit Tensor representing the batch size.
dtype
the data type to use for the state.
Returns
If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size, state_size] filled with zeros.
If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size, s] for each s in state_size.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.nn.rnn_cell.GRUCell\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/rnn_cell_impl.py#L484-L609) |\n\nGated Recurrent Unit cell (cf.\n\nInherits From: [`LayerRNNCell`](../../../tf/contrib/rnn/LayerRNNCell)\n\n#### View aliases\n\n\n**Main aliases**\n\n\\`tf.contrib.rnn.GRUCell\\`\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.nn.rnn_cell.GRUCell`](/api_docs/python/tf/compat/v1/nn/rnn_cell/GRUCell)\n\n\u003cbr /\u003e\n\n tf.nn.rnn_cell.GRUCell(\n num_units, activation=None, reuse=None, kernel_initializer=None,\n bias_initializer=None, name=None, dtype=None, **kwargs\n )\n\n\u003chttp://arxiv.org/abs/1406.1078\u003e).\n\nNote that this cell is not optimized for performance. Please use\n[`tf.contrib.cudnn_rnn.CudnnGRU`](../../../tf/contrib/cudnn_rnn/CudnnGRU) for better performance on GPU, or\n[`tf.contrib.rnn.GRUBlockCellV2`](../../../tf/contrib/rnn/GRUBlockCellV2) for better performance on CPU.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `num_units` | int, The number of units in the GRU cell. |\n| `activation` | Nonlinearity to use. Default: `tanh`. |\n| `reuse` | (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. |\n| `kernel_initializer` | (optional) The initializer to use for the weight and projection matrices. |\n| `bias_initializer` | (optional) The initializer to use for the bias. |\n| `name` | String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. |\n| `dtype` | Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. |\n| `**kwargs` | Dict, keyword named properties for common layer attributes, like `trainable` etc when constructing the cell from configs of get_config(). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `graph` | DEPRECATED FUNCTION \u003cbr /\u003e | **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Stop using this property because tf.layers layers no longer track their graph. |\n| `output_size` | Integer or TensorShape: size of outputs produced by this cell. |\n| `scope_name` | \u003cbr /\u003e |\n| `state_size` | size(s) of state(s) used by this cell. \u003cbr /\u003e It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `get_initial_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/rnn_cell_impl.py#L281-L309) \n\n get_initial_state(\n inputs=None, batch_size=None, dtype=None\n )\n\n### `zero_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/rnn_cell_impl.py#L311-L340) \n\n zero_state(\n batch_size, dtype\n )\n\nReturn zero-filled state tensor(s).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|--------------|---------------------------------------------------------|\n| `batch_size` | int, float, or unit Tensor representing the batch size. |\n| `dtype` | the data type to use for the state. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| If `state_size` is an int or TensorShape, then the return value is a `N-D` tensor of shape `[batch_size, state_size]` filled with zeros. \u003cbr /\u003e If `state_size` is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of `2-D` tensors with the shapes `[batch_size, s]` for each s in `state_size`. ||\n\n\u003cbr /\u003e"]]