list of RNNCells that will be composed in this order.
state_is_tuple
If True, accepted and returned states are n-tuples, where
n = len(cells). If False, the states are all concatenated along the
column axis. This latter behavior will soon be deprecated.
Raises
ValueError
if cells is empty (not allowed), or at least one of the cells
returns a state tuple but the flag state_is_tuple is False.
Attributes
graph
DEPRECATED FUNCTION
output_size
Integer or TensorShape: size of outputs produced by this cell.
scope_name
state_size
size(s) of state(s) used by this cell.
It can be represented by an Integer, a TensorShape or a tuple of Integers
or TensorShapes.
int, float, or unit Tensor representing the batch size.
dtype
the data type to use for the state.
Returns
If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size, state_size] filled with zeros.
If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size, s] for each s in state_size.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.nn.rnn_cell.MultiRNNCell\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/rnn_cell_impl.py#L1198-L1319) |\n\nRNN cell composed sequentially of multiple simple cells.\n\nInherits From: [`RNNCell`](../../../tf/nn/rnn_cell/RNNCell)\n\n#### View aliases\n\n\n**Main aliases**\n\n\\`tf.contrib.rnn.MultiRNNCell\\`\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.nn.rnn_cell.MultiRNNCell`](/api_docs/python/tf/compat/v1/nn/rnn_cell/MultiRNNCell)\n\n\u003cbr /\u003e\n\n tf.nn.rnn_cell.MultiRNNCell(\n cells, state_is_tuple=True\n )\n\n#### Example:\n\n num_units = [128, 64]\n cells = [BasicLSTMCell(num_units=n) for n in num_units]\n stacked_rnn_cell = MultiRNNCell(cells)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `cells` | list of RNNCells that will be composed in this order. |\n| `state_is_tuple` | If True, accepted and returned states are n-tuples, where `n = len(cells)`. If False, the states are all concatenated along the column axis. This latter behavior will soon be deprecated. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|-------------------------------------------------------------------------------------------------------------------------------|\n| `ValueError` | if cells is empty (not allowed), or at least one of the cells returns a state tuple but the flag `state_is_tuple` is `False`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `graph` | DEPRECATED FUNCTION \u003cbr /\u003e | **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Stop using this property because tf.layers layers no longer track their graph. |\n| `output_size` | Integer or TensorShape: size of outputs produced by this cell. |\n| `scope_name` | \u003cbr /\u003e |\n| `state_size` | size(s) of state(s) used by this cell. \u003cbr /\u003e It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `get_initial_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/rnn_cell_impl.py#L281-L309) \n\n get_initial_state(\n inputs=None, batch_size=None, dtype=None\n )\n\n### `zero_state`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/rnn_cell_impl.py#L1262-L1269) \n\n zero_state(\n batch_size, dtype\n )\n\nReturn zero-filled state tensor(s).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|--------------|---------------------------------------------------------|\n| `batch_size` | int, float, or unit Tensor representing the batch size. |\n| `dtype` | the data type to use for the state. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| If `state_size` is an int or TensorShape, then the return value is a `N-D` tensor of shape `[batch_size, state_size]` filled with zeros. \u003cbr /\u003e If `state_size` is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of `2-D` tensors with the shapes `[batch_size, s]` for each s in `state_size`. ||\n\n\u003cbr /\u003e"]]