tf.placeholder
Stay organized with collections
Save and categorize content based on your preferences.
Inserts a placeholder for a tensor that will be always fed.
tf.placeholder(
dtype, shape=None, name=None
)
For example:
x = tf.compat.v1.placeholder(tf.float32, shape=(1024, 1024))
y = tf.matmul(x, x)
with tf.compat.v1.Session() as sess:
print(sess.run(y)) # ERROR: will fail because x was not fed.
rand_array = np.random.rand(1024, 1024)
print(sess.run(y, feed_dict={x: rand_array})) # Will succeed.
Args |
dtype
|
The type of elements in the tensor to be fed.
|
shape
|
The shape of the tensor to be fed (optional). If the shape is not
specified, you can feed a tensor of any shape.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor that may be used as a handle for feeding a value, but not
evaluated directly.
|
Raises |
RuntimeError
|
if eager execution is enabled
|
Eager Compatibility
Placeholders are not compatible with eager execution.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.placeholder\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/array_ops.py#L2577-L2619) |\n\nInserts a placeholder for a tensor that will be always fed.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.placeholder`](/api_docs/python/tf/compat/v1/placeholder)\n\n\u003cbr /\u003e\n\n tf.placeholder(\n dtype, shape=None, name=None\n )\n\n| **Key Point:** This tensor will produce an error if evaluated. Its value must be fed using the `feed_dict` optional argument to [`Session.run()`](../tf/InteractiveSession#run), [`Tensor.eval()`](../tf/Tensor#eval), or [`Operation.run()`](../tf/Operation#run).\n\n#### For example:\n\n x = tf.compat.v1.placeholder(tf.float32, shape=(1024, 1024))\n y = tf.matmul(x, x)\n\n with tf.compat.v1.Session() as sess:\n print(sess.run(y)) # ERROR: will fail because x was not fed.\n\n rand_array = np.random.rand(1024, 1024)\n print(sess.run(y, feed_dict={x: rand_array})) # Will succeed.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|------------------------------------------------------------------------------------------------------------------|\n| `dtype` | The type of elements in the tensor to be fed. |\n| `shape` | The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a tensor of any shape. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` that may be used as a handle for feeding a value, but not evaluated directly. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|----------------|-------------------------------|\n| `RuntimeError` | if eager execution is enabled |\n\n\u003cbr /\u003e\n\n#### Eager Compatibility\n\nPlaceholders are not compatible with eager execution."]]