Initializer that generates tensors with a normal distribution.
Inherits From: Initializer
tf.random_normal_initializer(
    mean=0.0, stddev=1.0, seed=None, dtype=tf.dtypes.float32
)
| Args | 
|---|
| mean | a python scalar or a scalar tensor. Mean of the random values to
generate. | 
| stddev | a python scalar or a scalar tensor. Standard deviation of the random
values to generate. | 
| seed | A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seedfor behavior. | 
| dtype | Default data type, used if no dtypeargument is provided when
calling the initializer. Only floating point types are supported. | 
Methods
from_config
View source
@classmethod
from_config(
    config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | 
|---|
| config | A Python dictionary. It will typically be the output of get_config. | 
| Returns | 
|---|
| An Initializer instance. | 
get_config
View source
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | 
|---|
| A JSON-serializable Python dict. | 
__call__
View source
__call__(
    shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
| Args | 
|---|
| shape | Shape of the tensor. | 
| dtype | Optional dtype of the tensor. If not provided use the initializer
dtype. | 
| partition_info | Optional information about the possible partitioning of a
tensor. |