tf.random_uniform_initializer
Stay organized with collections
Save and categorize content based on your preferences.
Initializer that generates tensors with a uniform distribution.
Inherits From: Initializer
tf.random_uniform_initializer(
minval=0, maxval=None, seed=None, dtype=tf.dtypes.float32
)
Args |
minval
|
A python scalar or a scalar tensor. Lower bound of the range of
random values to generate.
|
maxval
|
A python scalar or a scalar tensor. Upper bound of the range of
random values to generate. Defaults to 1 for float types.
|
seed
|
A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed for behavior.
|
dtype
|
Default data type, used if no dtype argument is provided when
calling the initializer.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args |
config
|
A Python dictionary. It will typically be the output of
get_config .
|
Returns |
An Initializer instance.
|
get_config
View source
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns |
A JSON-serializable Python dict.
|
__call__
View source
__call__(
shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
Args |
shape
|
Shape of the tensor.
|
dtype
|
Optional dtype of the tensor. If not provided use the initializer
dtype.
|
partition_info
|
Optional information about the possible partitioning of a
tensor.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.random_uniform_initializer\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/random_uniform_initializer) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/init_ops.py#L256-L291) |\n\nInitializer that generates tensors with a uniform distribution.\n\nInherits From: [`Initializer`](../tf/keras/initializers/Initializer)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.initializers.random_uniform`](/api_docs/python/tf/keras/initializers/RandomUniform)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.initializers.random_uniform`](/api_docs/python/tf/compat/v1/random_uniform_initializer), [`tf.compat.v1.random_uniform_initializer`](/api_docs/python/tf/compat/v1/random_uniform_initializer)\n\n\u003cbr /\u003e\n\n tf.random_uniform_initializer(\n minval=0, maxval=None, seed=None, dtype=tf.dtypes.float32\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|---------------------------------------------------------------------------------------------------------------------------------|\n| `minval` | A python scalar or a scalar tensor. Lower bound of the range of random values to generate. |\n| `maxval` | A python scalar or a scalar tensor. Upper bound of the range of random values to generate. Defaults to 1 for float types. |\n| `seed` | A Python integer. Used to create random seeds. See [`tf.compat.v1.set_random_seed`](../tf/random/set_random_seed) for behavior. |\n| `dtype` | Default data type, used if no `dtype` argument is provided when calling the initializer. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/init_ops.py#L78-L97) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates an initializer from a configuration dictionary.\n\n#### Example:\n\n initializer = RandomUniform(-1, 1)\n config = initializer.get_config()\n initializer = RandomUniform.from_config(config)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|-----------------------------------------------------------------------|\n| `config` | A Python dictionary. It will typically be the output of `get_config`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| An Initializer instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/init_ops.py#L285-L291) \n\n get_config()\n\nReturns the configuration of the initializer as a JSON-serializable dict.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A JSON-serializable Python dict. ||\n\n\u003cbr /\u003e\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/ops/init_ops.py#L279-L283) \n\n __call__(\n shape, dtype=None, partition_info=None\n )\n\nReturns a tensor object initialized as specified by the initializer.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|------------------|--------------------------------------------------------------------------|\n| `shape` | Shape of the tensor. |\n| `dtype` | Optional dtype of the tensor. If not provided use the initializer dtype. |\n| `partition_info` | Optional information about the possible partitioning of a tensor. |\n\n\u003cbr /\u003e"]]