|  TensorFlow 2 version |  View source on GitHub | 
Fills empty rows in the input 2-D SparseTensor with a default value.
tf.sparse.fill_empty_rows(
    sp_input, default_value, name=None
)
This op adds entries with the specified default_value at index
[row, 0] for any row in the input that does not already have a value.
For example, suppose sp_input has shape [5, 6] and non-empty values:
[0, 1]: a
[0, 3]: b
[2, 0]: c
[3, 1]: d
Rows 1 and 4 are empty, so the output will be of shape [5, 6] with values:
[0, 1]: a
[0, 3]: b
[1, 0]: default_value
[2, 0]: c
[3, 1]: d
[4, 0]: default_value
Note that the input may have empty columns at the end, with no effect on this op.
The output SparseTensor will be in row-major order and will have the
same shape as the input.
This op also returns an indicator vector such that
empty_row_indicator[i] = True iff row i was an empty row.
| Args | |
|---|---|
| sp_input | A SparseTensorwith shape[N, M]. | 
| default_value | The value to fill for empty rows, with the same type as sp_input. | 
| name | A name prefix for the returned tensors (optional) | 
| Returns | |
|---|---|
| sp_ordered_output | A SparseTensorwith shape[N, M], and with all empty
rows filled in withdefault_value. | 
| empty_row_indicator | A bool vector of length Nindicating whether each
input row was empty. | 
| Raises | |
|---|---|
| TypeError | If sp_inputis not aSparseTensor. |