Agrega o resumo das estatísticas acumuladas do lote.
As estatísticas resumidas contêm gradientes e hessianos acumulados para cada nó, balde e ID de dimensão.
Constantes
Corda | OP_NAME | O nome desta operação, conforme conhecido pelo mecanismo principal do TensorFlow |
Métodos Públicos
estática BoostedTreesSparseAggregateStats | create ( Escopo do escopo , Operando < TInt32 > nodeIds, Operando < TFloat32 > gradientes, Operando < TFloat32 > hessians, Operando < TInt32 > featureIndices, Operando < TInt32 > featureValues, Operando < TInt32 > featureShape, Long maxSplits, Long numBuckets) Método de fábrica para criar uma classe que envolve uma nova operação BoostedTreesSparseAggregateStats. |
Saída < TInt32 > | statsSummaryIndices () int32; Índices de classificação 2 de tensores esparsos resumidos (forma = [número de estatísticas diferentes de zero, 4]) O segundo eixo pode ser apenas 4, incluindo ID do nó, dimensão do recurso, ID do intervalo e estatística_dimension. |
Saída < TInt32 > | estatísticasSummaryShape () saída Tensor de classificação 1 (forma = [4]) O tensor tem os seguintes 4 valores: [max_splits, feature_dimension, num_buckets, Statistics_dimension], onde Statistics_dimension = gradiente_dimension + hessian_dimension. |
Saída < TFloat32 > | statsSummaryValues () Tensor de classificação 1 de saída (forma = [número de estatísticas diferentes de zero]) |
Métodos herdados
Constantes
String final estática pública OP_NAME
O nome desta operação, conforme conhecido pelo mecanismo principal do TensorFlow
Métodos Públicos
public static BoostedTreesSparseAggregateStats create ( Escopo de escopo , Operando < TInt32 > nodeIds, Operando < TFloat32 > gradientes, Operando < TFloat32 > hessians, Operando < TInt32 > featureIndices, Operando < TInt32 > featureValues, Operando < TInt32 > featureShape, Long maxSplits, Long numBuckets)
Método de fábrica para criar uma classe que envolve uma nova operação BoostedTreesSparseAggregateStats.
Parâmetros
escopo | escopo atual |
---|---|
IDs de nó | int32; Tensor de classificação 1 contendo IDs de nó para cada exemplo, formato [batch_size]. |
gradientes | float32; Tensor de classificação 2 (shape=[batch_size, logits_dimension]) com gradientes para cada exemplo. |
hessianos | float32; Tensor de classificação 2 (shape=[batch_size, hessian_dimension]) com hessians para cada exemplo. |
índices de recursos | int32; Índices de classificação 2 de tensores esparsos de recursos (forma = [número de entradas esparsas, 2]). Número de entradas esparsas em todas as instâncias do lote. O primeiro valor é o índice da instância, o segundo é a dimensão do recurso. O segundo eixo só pode ter 2 valores, ou seja, a versão densa de entrada do Tensor só pode ser matriz. |
featureValues | int32; Valores de classificação 1 de tensores esparsos de recursos (forma = [número de entradas esparsas]). Número de entradas esparsas em todas as instâncias do lote. O primeiro valor é o índice da instância, o segundo é a dimensão do recurso. |
recursoForma | int32; Forma densa de classificação 1 de tensores esparsos de recursos (forma = [2]). O primeiro eixo só pode ter 2 valores, [batch_size, feature_dimension]. |
maxSplits | interno; o número máximo de divisões possíveis em toda a árvore. |
numBuckets | interno; é igual ao valor máximo possível do recurso segmentado + 1. |
Devoluções
- uma nova instância de BoostedTreesSparseAggregateStats
Saída pública < TInt32 > statsSummaryIndices ()
int32; Índices de classificação 2 de tensores esparsos resumidos (forma = [número de estatísticas diferentes de zero, 4]) O segundo eixo pode ser apenas 4, incluindo ID do nó, dimensão do recurso, ID do intervalo e estatística_dimension. estatística_dimension = logits_dimension + hessian_dimension.
Saída pública < TInt32 > statsSummaryShape ()
saída Tensor de classificação 1 (forma = [4]) O tensor tem os seguintes 4 valores: [max_splits, feature_dimension, num_buckets, Statistics_dimension], onde Statistics_dimension = gradiente_dimension + hessian_dimension. gradiente_dimension é igual a label_dimension, ou seja, o espaço de saída. hessian_dimension pode ser igual à dimensão logits quando hessian diagonal é usado, ou label_dimension^2 quando hessian completo é usado.