DeserializeManySparse
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
シリアル化されたミニバッチから「SparseTensors」を逆シリアル化し、連結します。
入力 `serialized_sparse` は、形状 `[N x 3]` の文字列行列でなければなりません。ここで、 `N` はミニバッチ サイズであり、行は `SerializeSparse` のパックされた出力に対応します。元の `SparseTensor` オブジェクトのランクはすべて一致する必要があります。最終的な `SparseTensor` が作成されるとき、そのランクは、受信する `SparseTensor` オブジェクトのランクよりも 1 つ高くなります (新しい行次元に沿って連結されています)。
最初の次元を除くすべての次元に対する出力 `SparseTensor` オブジェクトの形状値は、対応する次元に対する入力 `SparseTensor` オブジェクトの形状値全体の最大値です。最初の形状値は「N」、つまりミニバッチ サイズです。
入力 `SparseTensor` オブジェクトのインデックスは、標準の辞書編集順に並べられていると想定されます。そうでない場合は、このステップの後で `SparseReorder` を実行してインデックスの順序を復元します。
たとえば、シリアル化された入力が 2 つの元の `SparseTensor` オブジェクトを表す `[2 x 3]` 行列である場合、次のようになります。
インデックス = [ 0] [10] [20] 値 = [1、2、3] 形状 = [50]
そして
インデックス = [ 2] [10] 値 = [4, 5] 形状 = [30]
最終的に逆シリアル化された `SparseTensor` は次のようになります。
インデックス = [0 0] [0 10] [0 20] [1 2] [1 10] 値 = [1、2、3、4、5] 形状 = [2 50]
定数
弦 | OP_NAME | TensorFlow コア エンジンによって認識される、この演算の名前 |
継承されたメソッド
クラスjava.lang.Objectからブール値 | 等しい(オブジェクト arg0) |
最終クラス<?> | getクラス() |
整数 | ハッシュコード() |
最後の空白 | 通知する() |
最後の空白 | すべて通知() |
弦 | toString () |
最後の空白 | wait (long arg0, int arg1) |
最後の空白 | 待機(長い引数0) |
最後の空白 | 待って() |
定数
パブリック静的最終文字列OP_NAME
TensorFlow コア エンジンによって認識される、この演算の名前
定数値: "DeserializeManySparse"
パブリックメソッド
新しい DeserializeManySparse オペレーションをラップするクラスを作成するファクトリ メソッド。
パラメーター
範囲 | 現在のスコープ |
---|
シリアル化されたスパース | 2 次元、「N」個のシリアル化された「SparseTensor」オブジェクト。 3 列必要です。 |
---|
dtype | シリアル化された `SparseTensor` オブジェクトの `dtype`。 |
---|
戻り値
- DeserializeManySparse の新しいインスタンス
public Output <T> sparseValues ()
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-25 UTC。
[null,null,["最終更新日 2025-07-25 UTC。"],[],[],null,["# DeserializeManySparse\n\npublic final class **DeserializeManySparse** \nDeserialize and concatenate \\`SparseTensors\\` from a serialized minibatch.\n\n\nThe input \\`serialized_sparse\\` must be a string matrix of shape \\`\\[N x 3\\]\\` where\n\\`N\\` is the minibatch size and the rows correspond to packed outputs of\n\\`SerializeSparse\\`. The ranks of the original \\`SparseTensor\\` objects\nmust all match. When the final \\`SparseTensor\\` is created, it has rank one\nhigher than the ranks of the incoming \\`SparseTensor\\` objects\n(they have been concatenated along a new row dimension).\n\n\nThe output \\`SparseTensor\\` object's shape values for all dimensions but the\nfirst are the max across the input \\`SparseTensor\\` objects' shape values\nfor the corresponding dimensions. Its first shape value is \\`N\\`, the minibatch\nsize.\n\n\nThe input \\`SparseTensor\\` objects' indices are assumed ordered in\nstandard lexicographic order. If this is not the case, after this\nstep run \\`SparseReorder\\` to restore index ordering.\n\n\nFor example, if the serialized input is a \\`\\[2 x 3\\]\\` matrix representing two\noriginal \\`SparseTensor\\` objects:\n\n\nindex = \\[ 0\\]\n\\[10\\]\n\\[20\\]\nvalues = \\[1, 2, 3\\]\nshape = \\[50\\]\n\n\nand\n\n\nindex = \\[ 2\\]\n\\[10\\]\nvalues = \\[4, 5\\]\nshape = \\[30\\]\n\n\nthen the final deserialized \\`SparseTensor\\` will be:\n\n\nindex = \\[0 0\\]\n\\[0 10\\]\n\\[0 20\\]\n\\[1 2\\]\n\\[1 10\\]\nvalues = \\[1, 2, 3, 4, 5\\]\nshape = \\[2 50\\]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n### Constants\n\n|--------|----------------------------------------------------------------------------------|---------------------------------------------------------|\n| String | [OP_NAME](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse#OP_NAME) | The name of this op, as known by TensorFlow core engine |\n\n### Public Methods\n\n|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| static \\\u003cT extends [TType](/jvm/api_docs/java/org/tensorflow/types/family/TType)\\\u003e [DeserializeManySparse](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse)\\\u003cT\\\u003e | [create](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse#create(org.tensorflow.op.Scope, org.tensorflow.Operand\u003corg.tensorflow.types.TString\u003e, java.lang.Class\u003cT\u003e))([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c[TString](/jvm/api_docs/java/org/tensorflow/types/TString)\\\u003e serializedSparse, Class\\\u003cT\\\u003e dtype) Factory method to create a class wrapping a new DeserializeManySparse operation. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e | [sparseIndices](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse#sparseIndices())() |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e | [sparseShape](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse#sparseShape())() |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [sparseValues](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse#sparseValues())() |\n\n### Inherited Methods\n\nFrom class [org.tensorflow.op.RawOp](/jvm/api_docs/java/org/tensorflow/op/RawOp) \n\n|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| final boolean | [equals](/jvm/api_docs/java/org/tensorflow/op/RawOp#equals(java.lang.Object))(Object obj) |\n| final int | [hashCode](/jvm/api_docs/java/org/tensorflow/op/RawOp#hashCode())() |\n| [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/RawOp#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n| final String | [toString](/jvm/api_docs/java/org/tensorflow/op/RawOp#toString())() |\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.op.Op](/jvm/api_docs/java/org/tensorflow/op/Op) \n\n|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [ExecutionEnvironment](/jvm/api_docs/java/org/tensorflow/ExecutionEnvironment) | [env](/jvm/api_docs/java/org/tensorflow/op/Op#env())() Return the execution environment this op was created in. |\n| abstract [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/Op#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n\nConstants\n---------\n\n#### public static final String\n**OP_NAME**\n\nThe name of this op, as known by TensorFlow core engine \nConstant Value: \"DeserializeManySparse\"\n\nPublic Methods\n--------------\n\n#### public static [DeserializeManySparse](/jvm/api_docs/java/org/tensorflow/op/io/DeserializeManySparse)\\\u003cT\\\u003e\n**create**\n([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003c[TString](/jvm/api_docs/java/org/tensorflow/types/TString)\\\u003e serializedSparse, Class\\\u003cT\\\u003e dtype)\n\nFactory method to create a class wrapping a new DeserializeManySparse operation. \n\n##### Parameters\n\n| scope | current scope |\n| serializedSparse | 2-D, The \\`N\\` serialized \\`SparseTensor\\` objects. Must have 3 columns. |\n| dtype | The \\`dtype\\` of the serialized \\`SparseTensor\\` objects. |\n|------------------|--------------------------------------------------------------------------|\n\n##### Returns\n\n- a new instance of DeserializeManySparse \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e\n**sparseIndices**\n()\n\n\u003cbr /\u003e\n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003c[TInt64](/jvm/api_docs/java/org/tensorflow/types/TInt64)\\\u003e\n**sparseShape**\n()\n\n\u003cbr /\u003e\n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**sparseValues**\n()\n\n\u003cbr /\u003e"]]