تُرجع موترًا قطريًا مجمعًا بقيم قطرية مجمعة معينة.
يُرجع موترًا بمحتوياته في "قطري" مثل `k[0]`-th إلى `k[1]`-th قطري للمصفوفة، مع كل شيء آخر مبطن بـ "padding". يحدد `num_rows` و`num_cols` بُعد المصفوفة الأعمق للمخرجات. إذا لم يتم تحديد كليهما، تفترض العملية أن المصفوفة الأعمق مربعة وتستنتج حجمها من `k` والبعد الأعمق لـ `قطري`. إذا تم تحديد واحد منهم فقط، فإن العملية تفترض أن القيمة غير المحددة هي أصغر قيمة ممكنة بناءً على معايير أخرى.
دع "القطري" له أبعاد "r" `[I, J, ..., L, M, N]`. موتر الخرج له رتبة `r+1` بالشكل `[I, J, ..., L, M, num_rows, num_cols]` عندما يتم إعطاء قطري واحد فقط (`k` هو عدد صحيح أو `k[0] == ك[1]`). بخلاف ذلك، يكون لها رتبة `r` بالشكل `[I, J, ..., L, num_rows, num_cols]`.
البعد الثاني الأعمق لـ "القطري" له معنى مزدوج. عندما يكون `k` عدديًا أو `k[0] == k[1]`، يكون `M` جزءًا من حجم الدُفعة [I, J, ..., M]، ويكون موتر الإخراج:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
padding_value ; otherwise
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
padding_value ; otherwise
على سبيل المثال:
# The main diagonal.
diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)
[5, 6, 7, 8]])
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4)
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]],
[[5, 0, 0, 0],
[0, 6, 0, 0],
[0, 0, 7, 0],
[0, 0, 0, 8]]]
# A superdiagonal (per batch).
diagonal = np.array([[1, 2, 3], # Input shape: (2, 3)
[4, 5, 6]])
tf.matrix_diag(diagonal, k = 1)
==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4)
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]],
[[0, 4, 0, 0],
[0, 0, 5, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3)
[4, 5, 0]],
[[6, 7, 9],
[9, 1, 0]]])
tf.matrix_diag(diagonals, k = (-1, 0))
==> [[[1, 0, 0], # Output shape: (2, 3, 3)
[4, 2, 0],
[0, 5, 3]],
[[6, 0, 0],
[9, 7, 0],
[0, 1, 9]]]
# Rectangular matrix.
diagonal = np.array([1, 2]) # Input shape: (2)
tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
==> [[0, 0, 0, 0], # Output shape: (3, 4)
[1, 0, 0, 0],
[0, 2, 0, 0]]
# Rectangular matrix with inferred num_cols and padding_value = 9.
tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
==> [[9, 9], # Output shape: (3, 2)
[1, 9],
[9, 2]]
الثوابت
خيط | OP_NAME | اسم هذه العملية كما هو معروف بواسطة محرك TensorFlow الأساسي |
الأساليب العامة
الإخراج <T> | كإخراج () إرجاع المقبض الرمزي للموتر. |
ثابت <T يمتد TType > MatrixDiag <T> | |
الإخراج <T> | الإخراج () لديه رتبة `r+1` عندما يكون `k` عددًا صحيحًا أو `k[0] == k[1]`، رتبة `r` بخلاف ذلك. |
الطرق الموروثة
الثوابت
السلسلة النهائية الثابتة العامة OP_NAME
اسم هذه العملية كما هو معروف بواسطة محرك TensorFlow الأساسي
الأساليب العامة
الإخراج العام <T> كإخراج ()
إرجاع المقبض الرمزي للموتر.
المدخلات إلى عمليات TensorFlow هي مخرجات عملية TensorFlow أخرى. يتم استخدام هذه الطريقة للحصول على مقبض رمزي يمثل حساب الإدخال.
إنشاء MatrixDiag <T> ثابت عام (نطاق النطاق ، المعامل <T> قطري، المعامل < TInt32 > k، المعامل < TInt32 > numRows، المعامل < TInt32 > numCols، المعامل <T> قيمة الحشو)
طريقة المصنع لإنشاء فئة تغلف عملية MatrixDiag جديدة.
حدود
نِطَاق | النطاق الحالي |
---|---|
قطري | الرتبة `r`، حيث `r >= 1` |
ك | الإزاحة القطرية. القيمة الموجبة تعني القطر الفائق، 0 تشير إلى القطر الرئيسي، والقيمة السالبة تعني الأقطار الفرعية. يمكن أن يكون `k` عددًا صحيحًا واحدًا (لقطر واحد) أو زوجًا من الأعداد الصحيحة التي تحدد الأطراف المنخفضة والعالية لنطاق المصفوفة. يجب ألا يكون `k[0]` أكبر من `k[1]`. |
numRows | عدد صفوف مصفوفة الإخراج. إذا لم يتم توفيره، فإن العملية تفترض أن مصفوفة الإخراج هي مصفوفة مربعة وتستنتج حجم المصفوفة من k والبعد الأعمق لـ "قطري". |
numCols | عدد أعمدة مصفوفة الإخراج. إذا لم يتم توفيره، فإن العملية تفترض أن مصفوفة الإخراج هي مصفوفة مربعة وتستنتج حجم المصفوفة من k والبعد الأعمق لـ "قطري". |
قيمة الحشو | الرقم المراد ملء المنطقة خارج النطاق القطري المحدد به. الافتراضي هو 0. |
المرتجعات
- مثيل جديد من MatrixDiag
الإخراج العام <T> الإخراج ()
لديه رتبة `r+1` عندما يكون `k` عددًا صحيحًا أو `k[0] == k[1]`، رتبة `r` بخلاف ذلك.