يحسب المنتج على طول شرائح الموتر.
اقرأ [القسم الخاص بالتجزئة](https://tensorflow.org/api_docs/python/tf/math#Segmentation) للحصول على شرح للشرائح.
يحسب الموتر بحيث \\(output_i = \prod_j data_j\\) حيث يكون المنتج أكبر من `j` بحيث يكون `segment_ids[j] == i`.
إذا كان المنتج فارغًا لمعرف مقطع معين `i`، `output[i] = 1`.

على سبيل المثال:
c = tf.constant([[1,2,3,4], [4, 3, 2, 1], [5,6,7,8]])
 tf.segment_prod(c, tf.constant([0, 0, 1]))
 # ==> [[4, 6, 6, 4],
 #      [5, 6, 7, 8]]
 الثوابت
| خيط | OP_NAME | اسم هذه العملية كما هو معروف بواسطة محرك TensorFlow الأساسي | 
الأساليب العامة
| الإخراج <T> |  كإخراج ()  إرجاع المقبض الرمزي للموتر. | 
| ثابت <T يمتد TType > SegmentProd <T> | |
| الإخراج <T> |  الإخراج ()  له نفس شكل البيانات، باستثناء البعد 0 الذي يحتوي على الحجم `k`، وهو عدد المقاطع.  | 
الطرق الموروثة
الثوابت
السلسلة النهائية الثابتة العامة OP_NAME
اسم هذه العملية كما هو معروف بواسطة محرك TensorFlow الأساسي
الأساليب العامة
الإخراج العام <T> كإخراج ()
إرجاع المقبض الرمزي للموتر.
المدخلات إلى عمليات TensorFlow هي مخرجات عملية TensorFlow أخرى. يتم استخدام هذه الطريقة للحصول على مقبض رمزي يمثل حساب الإدخال.
إنشاء SegmentProd <T> ثابت عام (نطاق النطاق ، بيانات المعامل <T>، المعامل <؟ يمتد TNumber > معرفات القطاعات)
طريقة المصنع لإنشاء فئة تلتف حول عملية SegmentProd جديدة.
حدود
| نِطَاق | النطاق الحالي | 
|---|---|
| معرفات القطاع | موتر أحادي الأبعاد حجمه يساوي حجم البعد الأول للبيانات. يجب فرز القيم ويمكن تكرارها. | 
المرتجعات
- مثيل جديد من SegmentProd
الإخراج العام <T> الإخراج ()
له نفس شكل البيانات، باستثناء البعد 0 الذي يحتوي على الحجم `k`، وهو عدد المقاطع.