Conozca lo último en aprendizaje automático, IA generativa y más en el
Simposio WiML 2023.
FixedUnigramCandidateSampler.Options
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Métodos heredados
De la clase java.lang.Object booleano | equals (Object arg0) |
Clase final <?> | getClass () |
En t | hashCode () |
vacío final | notificar () |
vacío final | notifyAll () |
Cuerda | toString () |
vacío final | espera (tiempo arg0, arg1 int) |
vacío final | espera (arg0 largo) |
vacío final | wait () |
Métodos públicos
Parámetros
distorsión | La distorsión se utiliza para sesgar la distribución de probabilidad unigrama. Cada peso se eleva primero a la potencia de la distorsión antes de agregarlo a la distribución interna de unigramo. Como resultado, la distorsión = 1.0 proporciona un muestreo de unigramo regular (según lo definido por el archivo de vocabulario) y la distorsión = 0.0 proporciona una distribución uniforme. |
---|
Parámetros
numReservedIds | Opcionalmente, los usuarios pueden agregar algunos ID reservados en el rango [0, ..., num_reserved_ids). Un caso de uso es que se utiliza un token de palabra desconocida especial como ID 0. Estos ID tendrán una probabilidad de muestreo de 0. |
---|
Parámetros
numShards | Se puede utilizar un muestreador para muestrear de un subconjunto del rango original con el fin de acelerar todo el cálculo a través del paralelismo. Este parámetro (junto con 'fragmento') indica el número de particiones que se utilizan en el cálculo general. |
---|
Parámetros
semilla | Si la semilla o semilla2 se establecen en un valor distinto de cero, el generador de números aleatorios es sembrado por la semilla dada. De lo contrario, es sembrado por una semilla aleatoria. |
---|
Parámetros
semilla2 | Una segunda semilla para evitar la colisión de semillas. |
---|
Parámetros
casco | Se puede utilizar un muestreador para muestrear de un subconjunto del rango original con el fin de acelerar todo el cálculo a través del paralelismo. Este parámetro (junto con 'num_shards') indica el número de partición particular de una operación de muestreo, cuando se utiliza la partición. |
---|
Parámetros
unigramos | Una lista de recuentos o probabilidades de unigramo, uno por ID en orden secuencial. Se debe pasar exactamente uno de vocab_file y unigrams a esta operación. |
---|
Parámetros
vocabFile | Cada línea válida en este archivo (que debe tener un formato similar a CSV) corresponde a una ID de palabra válida. Los ID están en orden secuencial, comenzando por num_reserved_ids. Se espera que la última entrada en cada línea sea un valor correspondiente al recuento o probabilidad relativa. Exactamente uno de vocab_file y unigrams debe pasarse a esta operación. |
---|
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2021-11-29 (UTC)
[null,null,["Última actualización: 2021-11-29 (UTC)"],[],[],null,["# FixedUnigramCandidateSampler.Options\n\npublic static class **FixedUnigramCandidateSampler.Options** \nOptional attributes for [FixedUnigramCandidateSampler](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler) \n\n### Public Methods\n\n|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [distortion](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#distortion(java.lang.Float))(Float distortion) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [numReservedIds](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#numReservedIds(java.lang.Long))(Long numReservedIds) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [numShards](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#numShards(java.lang.Long))(Long numShards) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [seed](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#seed(java.lang.Long))(Long seed) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [seed2](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#seed2(java.lang.Long))(Long seed2) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [shard](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#shard(java.lang.Long))(Long shard) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [unigrams](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#unigrams(java.util.List\u003cjava.lang.Float\u003e))(List\\\u003cFloat\\\u003e unigrams) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [vocabFile](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#vocabFile(java.lang.String))(String vocabFile) |\n\n### Inherited Methods\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nPublic Methods\n--------------\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**distortion**\n(Float distortion)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| distortion | The distortion is used to skew the unigram probability distribution. Each weight is first raised to the distortion's power before adding to the internal unigram distribution. As a result, distortion = 1.0 gives regular unigram sampling (as defined by the vocab file), and distortion = 0.0 gives a uniform distribution. |\n|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**numReservedIds**\n(Long numReservedIds)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| numReservedIds | Optionally some reserved IDs can be added in the range \\[0, ..., num_reserved_ids) by the users. One use case is that a special unknown word token is used as ID 0. These IDs will have a sampling probability of 0. |\n|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**numShards**\n(Long numShards)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| numShards | A sampler can be used to sample from a subset of the original range in order to speed up the whole computation through parallelism. This parameter (together with 'shard') indicates the number of partitions that are being used in the overall computation. |\n|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**seed**\n(Long seed)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| seed | If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed. |\n|------|----------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**seed2**\n(Long seed2)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| seed2 | An second seed to avoid seed collision. |\n|-------|-----------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**shard**\n(Long shard)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| shard | A sampler can be used to sample from a subset of the original range in order to speed up the whole computation through parallelism. This parameter (together with 'num_shards') indicates the particular partition number of a sampler op, when partitioning is being used. |\n|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**unigrams**\n(List\\\u003cFloat\\\u003e unigrams)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| unigrams | A list of unigram counts or probabilities, one per ID in sequential order. Exactly one of vocab_file and unigrams should be passed to this op. |\n|----------|------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**vocabFile**\n(String vocabFile)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| vocabFile | Each valid line in this file (which should have a CSV-like format) corresponds to a valid word ID. IDs are in sequential order, starting from num_reserved_ids. The last entry in each line is expected to be a value corresponding to the count or relative probability. Exactly one of vocab_file and unigrams needs to be passed to this op. |\n|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|"]]