ApplyMomentum

คลาสสุดท้ายสาธารณะ ApplyMomentum

อัปเดต '*var' ตามรูปแบบโมเมนตัม

ตั้งค่า use_nesterov = True หากคุณต้องการใช้โมเมนตัม Nesterov

สะสม = สะสม * โมเมนตัม + ผู้สำเร็จการศึกษา var -= lr * สะสม

คลาสที่ซ้อนกัน

ระดับ ใช้โมเมนตัมตัวเลือก แอตทริบิวต์เพิ่มเติมสำหรับ ApplyMomentum

ค่าคงที่

สตริง OP_NAME ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

วิธีการสาธารณะ

เอาท์พุต <T>
เป็นเอาท์พุต ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
คงที่ <T ขยาย TType > ApplyMomentum <T>
สร้าง (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> สะสม, ตัวดำเนินการ <T> lr, ตัว ดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <T> โมเมนตัม, ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ApplyMomentum ใหม่
เอาท์พุต <T>
ออก ()
เช่นเดียวกับ "var"
ApplyMomentum.Options แบบคงที่
useLocking (การใช้ล็อคแบบบูลีน)
ApplyMomentum.Options แบบคงที่
useNesterov (การใช้บูลีน UseNesterov)

วิธีการสืบทอด

ค่าคงที่

สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME

ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

ค่าคงที่: "ApplyMomentum"

วิธีการสาธารณะ

เอาท์ พุท สาธารณะ <T> asOutput ()

ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์

อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต

สาธารณะคง ApplyMomentum <T> สร้าง (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> สะสม, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <T> โมเมนตัม, ตัวเลือก... ตัวเลือก)

วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ApplyMomentum ใหม่

พารามิเตอร์
ขอบเขต ขอบเขตปัจจุบัน
var ควรมาจากตัวแปร ()
สะสม ควรมาจากตัวแปร ()
ปัจจัยการปรับขนาด ต้องเป็นสเกลาร์
ผู้สำเร็จการศึกษา การไล่ระดับสี
โมเมนตัม โมเมนตัม. ต้องเป็นสเกลาร์
ตัวเลือก มีค่าแอตทริบิวต์ทางเลือก
การส่งคืน
  • อินสแตนซ์ใหม่ของ ApplyMomentum

เอาท์พุท สาธารณะ <T> ออก ()

เช่นเดียวกับ "var"

ApplyMomentum.Options แบบคงที่สาธารณะ useLocking (useLocking บูลีน)

พารามิเตอร์
ใช้ล็อค หากเป็น "จริง" การอัปเดต var และ accum tensor จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง

ApplyMomentum.Options สาธารณะคง useNesterov (useNesterov บูลีน)

พารามิเตอร์
ใช้ Nesterov หาก "จริง" เทนเซอร์ที่ส่งผ่านไปยังการคำนวณ Grad จะเป็น var - lr * โมเมนตัม * สะสม ดังนั้นในท้ายที่สุด var ที่คุณได้รับก็คือ var - lr * โมเมนตัม * สะสม