อัปเดต '*var' ตามอัลกอริทึม RMSProp
โปรดทราบว่าในการใช้อัลกอริธึมนี้อย่างหนาแน่น ms และ mom จะอัปเดตแม้ว่าผู้สำเร็จการศึกษาจะเป็นศูนย์ แต่ในการใช้งานแบบเบาบางนี้ ms และ mom จะไม่อัปเดตในการวนซ้ำในระหว่างที่ผู้สำเร็จการศึกษาเป็นศูนย์
Mean_square = การสลาย * Mean_Square + (1-การสลายตัว) * การไล่ระดับสี ** 2 Delta = Learning_rate * การไล่ระดับสี / sqrt (mean_square + epsilon)
ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- โมเมนตัม * mom_{t-1} + lr * grad / sqrt(ms + epsilon) var <- var - mom
คลาสที่ซ้อนกัน
ระดับ | ApplyRmsProp.Options | แอ็ตทริบิวต์ทางเลือกสำหรับ ApplyRmsProp |
ค่าคงที่
สตริง | OP_NAME | ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow |
วิธีการสาธารณะ
เอาท์พุต <T> | เป็นเอาท์พุต () ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์ |
คงที่ <T ขยาย TType > ApplyRmsProp <T> | สร้าง ( ขอบเขต ขอบเขต ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> ms, ตัวถูกดำเนินการ <T> แม่, ตัว ถูกดำเนินการ <T> lr, ตัวถูกดำเนินการ <T> rho, ตัว ถูกดำเนินการ <T> โมเมนตัม, ตัวถูก ดำเนินการ <T> เอปไซลอน, ตัวถูกดำเนินการ <T > ผู้สำเร็จการศึกษา ตัวเลือก... ตัวเลือก) วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ApplyRmsProp ใหม่ |
เอาท์พุต <T> | ออก () เช่นเดียวกับ "var" |
ApplyRmsProp.Options แบบคงที่ | useLocking (การใช้ล็อคแบบบูลีน) |
วิธีการสืบทอด
ค่าคงที่
สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME
ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow
วิธีการสาธารณะ
เอาท์ พุท สาธารณะ <T> asOutput ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต
สาธารณะ ApplyRmsProp <T> สร้าง แบบคงที่ (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> ms, ตัวดำเนินการ <T> แม่, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> rho, ตัว ดำเนิน การ <T> โมเมนตัม, ตัวถูกดำเนินการ <T > เอปไซลอน, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ApplyRmsProp ใหม่
พารามิเตอร์
ขอบเขต | ขอบเขตปัจจุบัน |
---|---|
var | ควรมาจากตัวแปร () |
นางสาว | ควรมาจากตัวแปร () |
แม่ | ควรมาจากตัวแปร () |
ล | ปัจจัยการปรับขนาด ต้องเป็นสเกลาร์ |
โร | อัตราการสลายตัว ต้องเป็นสเกลาร์ |
เอปไซลอน | ระยะริดจ์ ต้องเป็นสเกลาร์ |
ผู้สำเร็จการศึกษา | การไล่ระดับสี |
ตัวเลือก | มีค่าแอตทริบิวต์ทางเลือก |
การส่งคืน
- อินสแตนซ์ใหม่ของ ApplyRmsProp
ApplyRmsProp.Options แบบคงที่สาธารณะ useLocking (useLocking แบบบูลีน)
พารามิเตอร์
ใช้ล็อค | หากเป็น "จริง" การอัปเดต var, ms และ mom tensors จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง |
---|