ResourceSparseApplyAdagrad

ResourceSparseApplyAdagrad คลาสสุดท้ายสาธารณะ

อัปเดตรายการที่เกี่ยวข้องใน '*var' และ '*accum' ตามรูปแบบ adagrad

นั่นคือสำหรับแถวที่เรามี grad เราอัปเดต var และ accum ดังนี้: accum += grad * grad var -= lr * grad * (1 / sqrt(accum))

คลาสที่ซ้อนกัน

ระดับ ResourceSparseApplyAdagrad.Options แอ็ตทริบิวต์ทางเลือกสำหรับ ResourceSparseApplyAdagrad

ค่าคงที่

สตริง OP_NAME ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

วิธีการสาธารณะ

คงที่ <T ขยาย TType > ResourceSparseApplyAdagrad
สร้าง ( ขอบเขต ขอบเขต ตัวดำเนินการ <?> var, ตัวดำเนินการ <?> accum, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี, ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ResourceSparseApplyAdagrad ใหม่
ResourceSparseApplyAdagrad.Options แบบคงที่
updateSlots (บูลีน updateSlots)
ResourceSparseApplyAdagrad.Options แบบคงที่
useLocking (การใช้ล็อคแบบบูลีน)

วิธีการสืบทอด

org.tensorflow.op.RawOp
บูลีนสุดท้าย
เท่ากับ (วัตถุ obj)
int สุดท้าย
การดำเนินการ
สหกรณ์ ()
ส่งกลับหน่วยการคำนวณนี้เป็นการ Operation เดียว
สตริงสุดท้าย
บูลีน
เท่ากับ (วัตถุ arg0)
คลาสสุดท้าย<?>
รับคลาส ()
ภายใน
แฮชโค้ด ()
โมฆะสุดท้าย
แจ้ง ()
โมฆะสุดท้าย
แจ้งทั้งหมด ()
สตริง
toString ()
โมฆะสุดท้าย
รอสักครู่ (ยาว arg0, int arg1)
โมฆะสุดท้าย
รอ (ยาว arg0)
โมฆะสุดท้าย
รอ ()
ซ org.tensorflow.op.Op
บทคัดย่อ ExecutionEnvironment
สิ่งแวดล้อม ()
ส่งคืนสภาพแวดล้อมการดำเนินการที่ op นี้ถูกสร้างขึ้น
การดำเนินการ ที่เป็นนามธรรม
สหกรณ์ ()
ส่งกลับหน่วยการคำนวณนี้เป็นการ Operation เดียว

ค่าคงที่

สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME

ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

ค่าคงที่: "ResourceSparseApplyAdagrad"

วิธีการสาธารณะ

ResourceSparseApplyAdagrad แบบคงที่สาธารณะ สร้าง (ขอบเขต ขอบเขต ตัวดำเนินการ <?> var, ตัวดำเนินการ <?> accum, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี, ตัวเลือก... ตัวเลือก)

วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ResourceSparseApplyAdagrad ใหม่

พารามิเตอร์
ขอบเขต ขอบเขตปัจจุบัน
var ควรมาจากตัวแปร ()
สะสม ควรมาจากตัวแปร ()
อัตราการเรียนรู้ ต้องเป็นสเกลาร์
ผู้สำเร็จการศึกษา การไล่ระดับสี
ดัชนี เวกเตอร์ของดัชนีในมิติแรกของ var และ accum
ตัวเลือก มีค่าแอตทริบิวต์ทางเลือก
การส่งคืน
  • อินสแตนซ์ใหม่ของ ResourceSparseApplyAdagrad

ResourceSparseApplyAdagrad.Options สาธารณะแบบคงที่ updateSlots (Boolean updateSlots)

ResourceSparseApplyAdagrad.Options แบบคงที่สาธารณะ useLocking (useLocking แบบบูลีน)

พารามิเตอร์
ใช้ล็อค หากเป็น "จริง" การอัปเดต var และ accum tensor จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง