SparseApplyAdagradDa

คลาสสุดท้ายสาธารณะ SparseApplyAdagradDa

อัปเดตรายการใน '*var' และ '*accum' ตามรูปแบบ adagrad ที่ใกล้เคียง

คลาสที่ซ้อนกัน

ระดับ SparseApplyAdagradDa.Options แอ็ตทริบิวต์ทางเลือกสำหรับ SparseApplyAdagradDa

ค่าคงที่

สตริง OP_NAME ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

วิธีการสาธารณะ

เอาท์พุต <T>
เป็นเอาท์พุต ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
คงที่ <T ขยาย TType > SparseApplyAdagradDa <T>
สร้าง ( ขอบเขต ขอบเขต ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> การไล่ระดับสะสม, ตัวดำเนินการ <T> การไล่ระดับสีSquaredAccumulator, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี, ตัว ดำเนิน การ <T> lr, ตัวดำเนินการ <T> l1, ตัวถูกดำเนินการ <T> l2 ตัวดำเนินการ < TInt64 > globalStep, ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseApplyAdagradDa ใหม่
เอาท์พุต <T>
ออก ()
เช่นเดียวกับ "var"
SparseApplyAdagradDa.Options แบบคงที่
useLocking (การใช้ล็อคแบบบูลีน)

วิธีการสืบทอด

ค่าคงที่

สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME

ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

ค่าคงที่: "SparseApplyAdagradDA"

วิธีการสาธารณะ

เอาท์ พุท สาธารณะ <T> asOutput ()

ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์

อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต

สาธารณะ SparseApplyAdagradDa <T> สร้าง (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> การไล่ระดับสะสม, ตัวดำเนินการ <T> การไล่ระดับสีSquaredAccumulator, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัว ดำเนิน การ <? ขยาย TNumber > ดัชนี, ตัวดำเนินการ <T> lr, ตัวถูกดำเนินการ <T> l1, ตัวดำเนินการ <T> l2, ตัวดำเนินการ < TInt64 > globalStep, ตัวเลือก... ตัวเลือก)

วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SparseApplyAdagradDa ใหม่

พารามิเตอร์
ขอบเขต ขอบเขตปัจจุบัน
var ควรมาจากตัวแปร ()
การไล่ระดับสีสะสม ควรมาจากตัวแปร ()
การไล่ระดับสีSquaredAccumulator ควรมาจากตัวแปร ()
ผู้สำเร็จการศึกษา การไล่ระดับสี
ดัชนี เวกเตอร์ของดัชนีในมิติแรกของ var และ accum
อัตราการเรียนรู้ ต้องเป็นสเกลาร์
l1 การทำให้เป็นมาตรฐาน L1 ต้องเป็นสเกลาร์
l2 การทำให้เป็นมาตรฐานของ L2 ต้องเป็นสเกลาร์
globalStep หมายเลขขั้นตอนการฝึกอบรม ต้องเป็นสเกลาร์
ตัวเลือก มีค่าแอตทริบิวต์ทางเลือก
การส่งคืน
  • อินสแตนซ์ใหม่ของ SparseApplyAdagradDa

เอาท์พุท สาธารณะ <T> ออก ()

เช่นเดียวกับ "var"

สาธารณะ SparseApplyAdagradDa.Options useLocking แบบคงที่ (useLocking แบบบูลีน)

พารามิเตอร์
ใช้ล็อค หากเป็น True การอัปเดต var และ accum tensor จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง