Svd
จัดทุกอย่างให้เป็นระเบียบอยู่เสมอด้วยคอลเล็กชัน
บันทึกและจัดหมวดหมู่เนื้อหาตามค่ากำหนดของคุณ
คำนวณการสลายตัวแบบไอเจนของชุดเมทริกซ์ที่อยู่ติดกันเอง
(หมายเหตุ: รองรับเฉพาะอินพุตจริงเท่านั้น)
คำนวณค่าลักษณะเฉพาะและเวกเตอร์ลักษณะเฉพาะของเมทริกซ์ M-by-N ที่อยู่ด้านในสุดในเทนเซอร์ โดยที่ tensor[...,:,:] = u[..., :, :] * Diag(s[..., :] ) * ย้าย(v[...,:,:])
ค่าคงที่
สตริง | OP_NAME | ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow |
วิธีการสืบทอด
จากคลาส java.lang.Object บูลีน | เท่ากับ (วัตถุ arg0) |
คลาสสุดท้าย<?> | รับคลาส () |
ภายใน | แฮชโค้ด () |
โมฆะสุดท้าย | แจ้ง () |
โมฆะสุดท้าย | แจ้งทั้งหมด () |
สตริง | toString () |
โมฆะสุดท้าย | รอสักครู่ (ยาว arg0, int arg1) |
โมฆะสุดท้าย | รอ (ยาว arg0) |
โมฆะสุดท้าย | รอ () |
ค่าคงที่
สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME
ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow
ค่าคงที่: "XlaSvd"
วิธีการสาธารณะ
สร้าง Svd <T> คงที่สาธารณะ (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> a, Long maxIter, Float epsilon, String precisionConfig)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ Svd ใหม่
พารามิเตอร์
ขอบเขต | ขอบเขตปัจจุบัน |
---|
ก | เทนเซอร์อินพุต |
---|
แม็กซ์อิเตอร์ | จำนวนการอัปเดตการกวาดสูงสุด เช่น ส่วนสามเหลี่ยมล่างทั้งหมดหรือส่วนสามเหลี่ยมด้านบนตามพารามิเตอร์ด้านล่าง ตามหลักการศึกษาแล้ว มีการโต้แย้งว่าในทางปฏิบัติจำเป็นต้องมีการกวาดล้างบันทึกโดยประมาณ (ขั้นต่ำ (M, N)) (อ้างอิง: Golub & van Loan "การคำนวณเมทริกซ์") |
---|
เอปไซลอน | อัตราส่วนความอดทน |
---|
ความแม่นยำ Config | xla::PrecisionConfig โปรโตต่อเนื่อง |
---|
เอาท์พุท สาธารณะ <T> s ()
ค่าเอกพจน์ ค่าต่างๆ จะถูกจัดเรียงตามลำดับขนาดแบบย้อนกลับ ดังนั้น s[..., 0] จึงเป็นค่าที่มากที่สุด s[..., 1] จึงเป็นค่าที่ใหญ่เป็นอันดับสอง เป็นต้น
เนื้อหาของหน้าเว็บนี้ได้รับอนุญาตภายใต้ใบอนุญาตที่ต้องระบุที่มาของครีเอทีฟคอมมอนส์ 4.0 และตัวอย่างโค้ดได้รับอนุญาตภายใต้ใบอนุญาต Apache 2.0 เว้นแต่จะระบุไว้เป็นอย่างอื่น โปรดดูรายละเอียดที่นโยบายเว็บไซต์ Google Developers Java เป็นเครื่องหมายการค้าจดทะเบียนของ Oracle และ/หรือบริษัทในเครือ
อัปเดตล่าสุด 2025-07-27 UTC
[null,null,["อัปเดตล่าสุด 2025-07-27 UTC"],[],[],null,["# Svd\n\npublic final class **Svd** \nComputes the eigen decomposition of a batch of self-adjoint matrices\n\n\n(Note: Only real inputs are supported).\n\n\nComputes the eigenvalues and eigenvectors of the innermost M-by-N matrices in\ntensor such that tensor\\[...,:,:\\] = u\\[..., :, :\\] \\* Diag(s\\[..., :\\]) \\* Transpose(v\\[...,:,:\\]).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n### Constants\n\n|--------|-----------------------------------------------------------------|---------------------------------------------------------|\n| String | [OP_NAME](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#OP_NAME) | The name of this op, as known by TensorFlow core engine |\n\n### Public Methods\n\n|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| static \\\u003cT extends [TType](/jvm/api_docs/java/org/tensorflow/types/family/TType)\\\u003e [Svd](/jvm/api_docs/java/org/tensorflow/op/xla/Svd)\\\u003cT\\\u003e | [create](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#create(org.tensorflow.op.Scope, org.tensorflow.Operand\u003cT\u003e, java.lang.Long, java.lang.Float, java.lang.String))([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e a, Long maxIter, Float epsilon, String precisionConfig) Factory method to create a class wrapping a new Svd operation. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [s](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#s())() Singular values. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [u](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#u())() Left singular vectors. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [v](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#v())() Right singular vectors. |\n\n### Inherited Methods\n\nFrom class [org.tensorflow.op.RawOp](/jvm/api_docs/java/org/tensorflow/op/RawOp) \n\n|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| final boolean | [equals](/jvm/api_docs/java/org/tensorflow/op/RawOp#equals(java.lang.Object))(Object obj) |\n| final int | [hashCode](/jvm/api_docs/java/org/tensorflow/op/RawOp#hashCode())() |\n| [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/RawOp#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n| final String | [toString](/jvm/api_docs/java/org/tensorflow/op/RawOp#toString())() |\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.op.Op](/jvm/api_docs/java/org/tensorflow/op/Op) \n\n|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [ExecutionEnvironment](/jvm/api_docs/java/org/tensorflow/ExecutionEnvironment) | [env](/jvm/api_docs/java/org/tensorflow/op/Op#env())() Return the execution environment this op was created in. |\n| abstract [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/Op#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n\nConstants\n---------\n\n#### public static final String\n**OP_NAME**\n\nThe name of this op, as known by TensorFlow core engine \nConstant Value: \"XlaSvd\"\n\nPublic Methods\n--------------\n\n#### public static [Svd](/jvm/api_docs/java/org/tensorflow/op/xla/Svd)\\\u003cT\\\u003e\n**create**\n([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e a, Long maxIter, Float epsilon, String precisionConfig)\n\nFactory method to create a class wrapping a new Svd operation. \n\n##### Parameters\n\n| scope | current scope |\n| a | the input tensor. |\n| maxIter | maximum number of sweep update, i.e., the whole lower triangular part or upper triangular part based on parameter lower. Heuristically, it has been argued that approximately log(min (M, N)) sweeps are needed in practice (Ref: Golub \\& van Loan \"Matrix Computation\"). |\n| epsilon | the tolerance ratio. |\n| precisionConfig | a serialized xla::PrecisionConfig proto. |\n|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n##### Returns\n\n- a new instance of Svd \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**s**\n()\n\nSingular values. The values are sorted in reverse order of magnitude, so\ns\\[..., 0\\] is the largest value, s\\[..., 1\\] is the second largest, etc. \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**u**\n()\n\nLeft singular vectors. \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**v**\n()\n\nRight singular vectors."]]