tf.contrib.eager.value_and_gradients_function

Returns a function that computes f and its derivative w.r.t. params.

Example:

# f(x, y) = (x ^ 3) * y - x * (y ^ 2)
# Therefore, the 1st order derivatives are:
#   df / dx = 3 * (x ^ 2) * y - y ^ 2
#   df / dy = x ^ 3 - 2 * x * y
def f(x, y):
  return x * x * x * y - x * y * y

# Obtain a function that returns the function value and the 1st order
# gradients.
val_grads_fn = tfe.value_and_gradients_function(f)

x = 2.0
y = 3.0

# Invoke the value-and-gradients function.
f_val, (x_grad, y_grad) = val_grads_fn(x, y)
assert f_val.numpy() == (2 ** 3) * 3 - 2 * (3 ** 2)
assert x_grad.numpy() == 3 * (2 ** 2) * 3 - 3 ** 2
assert y_grad.numpy() == (2 ** 3) - 2 * 2 * 3

# To obtain a callable that returns the value of `f` and the gradient(s) of
# `f` with respect to a subset of its inputs, use the `params` keyword
# argument with `value_and_gradients_function()`.
val_ygrad_fn = tfe.value_and_gradients_function(f, params=[1])

f_val, (y_grad,) = val_ygrad_fn(x, y)
assert f_val.numpy() == (2 ** 3) * 3 - 2 * (3 ** 2)
assert y_grad.numpy() == (2 ** 3) - 2 * 2 * 3

f function to be differentiated. If f returns a scalar, this scalar will be differentiated. If f returns a tensor or list of tensors, by default a scalar will be computed by adding all their values to produce a single scalar. If desired, the tensors can be elementwise multiplied by the tensors passed as the dy keyword argument to the returned gradient function.
params list of parameter names of f or list of integers indexing the parameters with respect to which we'll differentiate. Passing None differentiates with respect to all parameters.

function which, when called, returns the value of f and the gradient of f with respect to all of params. The function takes an extra optional keyword argument "dy". Setting it allows computation of vector jacobian products for vectors other than the vector of ones.

ValueError if the params are not all strings or all integers.