weights acts as a coefficient for the loss. If a scalar is provided,
then the loss is simply scaled by the given value. If weights is a
tensor of size [batch_size], then the loss weights apply to each
corresponding sample.
Args
logits
[batch_size, num_classes] logits outputs of the network .
labels
[batch_size, 1] or [batch_size] labels of dtype int32 or int64
in the range [0, num_classes).
weights
Coefficients for the loss. The tensor must be a scalar or a tensor
of shape [batch_size] or [batch_size, 1].
scope
the scope for the operations performed in computing the loss.
Returns
A scalar Tensor representing the mean loss value.
Raises
ValueError
If the shapes of logits, labels, and weights are
incompatible, or if weights is None.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.contrib.losses.sparse_softmax_cross_entropy\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/contrib/losses/python/losses/loss_ops.py#L377-L409) |\n\nCross-entropy loss using [`tf.nn.sparse_softmax_cross_entropy_with_logits`](../../../tf/nn/sparse_softmax_cross_entropy_with_logits). (deprecated) \n\n tf.contrib.losses.sparse_softmax_cross_entropy(\n logits, labels, weights=1.0, scope=None\n )\n\n| **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed after 2016-12-30. Instructions for updating: Use tf.losses.sparse_softmax_cross_entropy instead. Note that the order of the logits and labels arguments has been changed.\n\n`weights` acts as a coefficient for the loss. If a scalar is provided,\nthen the loss is simply scaled by the given value. If `weights` is a\ntensor of size \\[`batch_size`\\], then the loss weights apply to each\ncorresponding sample.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------|------------------------------------------------------------------------------------------------------------------|\n| `logits` | \\[batch_size, num_classes\\] logits outputs of the network . |\n| `labels` | \\[batch_size, 1\\] or \\[batch_size\\] labels of dtype `int32` or `int64` in the range `[0, num_classes)`. |\n| `weights` | Coefficients for the loss. The tensor must be a scalar or a tensor of shape \\[batch_size\\] or \\[batch_size, 1\\]. |\n| `scope` | the scope for the operations performed in computing the loss. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A scalar `Tensor` representing the mean loss value. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|-----------------------------------------------------------------------------------------------|\n| `ValueError` | If the shapes of `logits`, `labels`, and `weights` are incompatible, or if `weights` is None. |\n\n\u003cbr /\u003e"]]