Dirichlet-Multinomial compound distribution.
Inherits From: Distribution
View aliases
Main aliases
`tf.contrib.distributions.DirichletMultinomial`
Compat aliases for migrationSee Migration guide for more details.
tf.distributions.DirichletMultinomial(
total_count, concentration, validate_args=False, allow_nan_stats=True,
name='DirichletMultinomial'
)
The Dirichlet-Multinomial distribution is parameterized by a (batch of)
length-K
concentration
vectors (K > 1
) and a total_count
number of
trials, i.e., the number of trials per draw from the DirichletMultinomial. It
is defined over a (batch of) length-K
vector counts
such that
tf.reduce_sum(counts, -1) = total_count
. The Dirichlet-Multinomial is
identically the Beta-Binomial distribution when K = 2
.
Mathematical Details
The Dirichlet-Multinomial is a distribution over K
-class counts, i.e., a
length-K
vector of non-negative integer counts = n = [n_0, ..., n_{K-1}]
.
The probability mass function (pmf) is,
pmf(n; alpha, N) = Beta(alpha + n) / (prod_j n_j!) / Z
Z = Beta(alpha) / N!
where:
concentration = alpha = [alpha_0, ..., alpha_{K-1}]
,alpha_j > 0
,total_count = N
,N
a positive integer,N!
isN
factorial, and,Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j)
is the multivariate beta function, and,Gamma
is the gamma function.
Dirichlet-Multinomial is a compound distribution, i.e., its samples are generated as follows.
- Choose class probabilities:
probs = [p_0,...,p_{K-1}] ~ Dir(concentration)
- Draw integers:
counts = [n_0,...,n_{K-1}] ~ Multinomial(total_count, probs)
The last concentration
dimension parametrizes a single Dirichlet-Multinomial
distribution. When calling distribution functions (e.g., dist.prob(counts)
),
concentration
, total_count
and counts
are broadcast to the same shape.
The last dimension of counts
corresponds single Dirichlet-Multinomial
distributions.
Distribution parameters are automatically broadcast in all functions; see examples for details.
Pitfalls
The number of classes, K
, must not exceed:
- the largest integer representable by
self.dtype
, i.e.,2**(mantissa_bits+1)
(IEE754), - the maximum
Tensor
index, i.e.,2**31-1
.
In other words,
K <= min(2**31-1, {
tf.float16: 2**11,
tf.float32: 2**24,
tf.float64: 2**53 }[param.dtype])
Examples
alpha = [1., 2., 3.]
n = 2.
dist = DirichletMultinomial(n, alpha)
Creates a 3-class distribution, with the 3rd class is most likely to be drawn. The distribution functions can be evaluated on counts.
# counts same shape as alpha.
counts = [0., 0., 2.]
dist.prob(counts) # Shape []
# alpha will be broadcast to [[1., 2., 3.], [1., 2., 3.]] to match counts.
counts = [[1., 1., 0.], [1., 0., 1.]]
dist.prob(counts) # Shape [2]
# alpha will be broadcast to shape [5, 7, 3] to match counts.
counts = [[...]] # Shape [5, 7, 3]
dist.prob(counts) # Shape [5, 7]
Creates a 2-batch of 3-class distributions.
alpha = [[1., 2., 3.], [4., 5., 6.]] # Shape [2, 3]
n = [3., 3.]
dist = DirichletMultinomial(n, alpha)
# counts will be broadcast to [[2., 1., 0.], [2., 1., 0.]] to match alpha.
counts = [2., 1., 0.]
dist.prob(counts) # Shape [2]
Args | |
---|---|
total_count
|
Non-negative floating point tensor, whose dtype is the same
as concentration . The shape is broadcastable to [N1,..., Nm] with
m >= 0 . Defines this as a batch of N1 x ... x Nm different
Dirichlet multinomial distributions. Its components should be equal to
integer values.
|
concentration
|
Positive floating point tensor, whose dtype is the
same as n with shape broadcastable to [N1,..., Nm, K] m >= 0 .
Defines this as a batch of N1 x ... x Nm different K class Dirichlet
multinomial distributions.
|
validate_args
|
Python bool , default False . When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
|
allow_nan_stats
|
Python bool , default True . When True , statistics
(e.g., mean, mode, variance) use the value "NaN " to indicate the
result is undefined. When False , an exception is raised if one or
more of the statistic's batch members are undefined.
|
name
|
Python str name prefixed to Ops created by this class.
|
Attributes | |
---|---|
allow_nan_stats
|
Python bool describing behavior when a stat is undefined.
Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. |
batch_shape
|
Shape of a single sample from a single event index as a TensorShape .
May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. |
concentration
|
Concentration parameter; expected prior counts for that coordinate. |
dtype
|
The DType of Tensor s handled by this Distribution .
|
event_shape
|
Shape of a single sample from a single batch as a TensorShape .
May be partially defined or unknown. |
name
|
Name prepended to all ops created by this Distribution .
|
parameters
|
Dictionary of parameters used to instantiate this Distribution .
|
reparameterization_type
|
Describes how samples from the distribution are reparameterized.
Currently this is one of the static instances
|
total_concentration
|
Sum of last dim of concentration parameter. |
total_count
|
Number of trials used to construct a sample. |
validate_args
|
Python bool indicating possibly expensive checks are enabled.
|
Methods
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1-D Tensor
.
The batch dimensions are indexes into independent, non-identical parameterizations of this distribution.
Args | |
---|---|
name
|
name to give to the op |
Returns | |
---|---|
batch_shape
|
Tensor .
|
cdf
cdf(
value, name='cdf'
)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
cdf
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
copy
copy(
**override_parameters_kwargs
)
Creates a deep copy of the distribution.
Args | |
---|---|
**override_parameters_kwargs
|
String/value dictionary of initialization arguments to override with new values. |
Returns | |
---|---|
distribution
|
A new instance of type(self) initialized from the union
of self.parameters and override_parameters_kwargs, i.e.,
dict(self.parameters, **override_parameters_kwargs) .
|
covariance
covariance(
name='covariance'
)
Covariance.
Covariance is (possibly) defined only for non-scalar-event distributions.
For example, for a length-k
, vector-valued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for non-vector, multivariate distributions (e.g.,
matrix-valued, Wishart), Covariance
shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices,
0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function
mapping indices of this distribution's event dimensions to indices of a
length-k'
vector.
Additional documentation from DirichletMultinomial
:
The covariance for each batch member is defined as the following:
Var(X_j) = n * alpha_j / alpha_0 * (1 - alpha_j / alpha_0) *
(n + alpha_0) / (1 + alpha_0)
where concentration = alpha
and
total_concentration = alpha_0 = sum_j alpha_j
.
The covariance between elements in a batch is defined as:
Cov(X_i, X_j) = -n * alpha_i * alpha_j / alpha_0 ** 2 *
(n + alpha_0) / (1 + alpha_0)
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
covariance
|
Floating-point Tensor with shape [B1, ..., Bn, k', k']
where the first n dimensions are batch coordinates and
k' = reduce_prod(self.event_shape) .
|
cross_entropy
cross_entropy(
other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution by
Q
. Assuming P, Q
are absolutely continuous with respect to
one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shanon)
cross entropy is defined as:
H[P, Q] = E_p[-log q(X)] = -int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
Args | |
---|---|
other
|
tfp.distributions.Distribution instance.
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
cross_entropy
|
self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of (Shanon) cross entropy.
|
entropy
entropy(
name='entropy'
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1-D int32 Tensor
.
Args | |
---|---|
name
|
name to give to the op |
Returns | |
---|---|
event_shape
|
Tensor .
|
is_scalar_batch
is_scalar_batch(
name='is_scalar_batch'
)
Indicates that batch_shape == []
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
is_scalar_batch
|
bool scalar Tensor .
|
is_scalar_event
is_scalar_event(
name='is_scalar_event'
)
Indicates that event_shape == []
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
is_scalar_event
|
bool scalar Tensor .
|
kl_divergence
kl_divergence(
other, name='kl_divergence'
)
Computes the Kullback--Leibler divergence.
Denote this distribution (self
) by p
and the other
distribution by
q
. Assuming p, q
are absolutely continuous with respect to reference
measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
= -int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q] - H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shanon) cross entropy, and H[.]
denotes (Shanon) entropy.
Args | |
---|---|
other
|
tfp.distributions.Distribution instance.
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
kl_divergence
|
self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of the Kullback-Leibler
divergence.
|
log_cdf
log_cdf(
value, name='log_cdf'
)
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields
a more accurate answer than simply taking the logarithm of the cdf
when
x << -1
.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
logcdf
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
log_prob
log_prob(
value, name='log_prob'
)
Log probability density/mass function.
Additional documentation from DirichletMultinomial
:
For each batch of counts,
value = [n_0, ..., n_{K-1}]
, P[value]
is the probability that after
sampling self.total_count
draws from this Dirichlet-Multinomial distribution,
the number of draws falling in class j
is n_j
. Since this definition is
exchangeable;
different sequences have the same counts so the probability includes a
combinatorial coefficient.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
log_prob
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
log_survival_function
log_survival_function(
value, name='log_survival_function'
)
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1 - P[X <= x] ]
= Log[ 1 - cdf(x) ]
Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1 - cdf(x)
when x >> 1
.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype .
|
mean
mean(
name='mean'
)
Mean.
mode
mode(
name='mode'
)
Mode.
param_shapes
@classmethod
param_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample()
.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
Args | |
---|---|
sample_shape
|
Tensor or python list/tuple. Desired shape of a call to
sample() .
|
name
|
name to prepend ops with. |
Returns | |
---|---|
dict of parameter name to Tensor shapes.
|
param_static_shapes
@classmethod
param_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape
) shapes.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
. Assumes that the sample's
shape is known statically.
Subclasses should override class method _param_shapes
to return
constant-valued tensors when constant values are fed.
Args | |
---|---|
sample_shape
|
TensorShape or python list/tuple. Desired shape of a call
to sample() .
|
Returns | |
---|---|
dict of parameter name to TensorShape .
|
Raises | |
---|---|
ValueError
|
if sample_shape is a TensorShape and is not fully defined.
|
prob
prob(
value, name='prob'
)
Probability density/mass function.
Additional documentation from DirichletMultinomial
:
For each batch of counts,
value = [n_0, ..., n_{K-1}]
, P[value]
is the probability that after
sampling self.total_count
draws from this Dirichlet-Multinomial distribution,
the number of draws falling in class j
is n_j
. Since this definition is
exchangeable;
different sequences have the same counts so the probability includes a
combinatorial coefficient.
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
prob
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
quantile
quantile(
value, name='quantile'
)
Quantile function. Aka "inverse cdf" or "percent point function".
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
quantile
|
a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .
|
sample
sample(
sample_shape=(), seed=None, name='sample'
)
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single
sample.
Args | |
---|---|
sample_shape
|
0D or 1D int32 Tensor . Shape of the generated samples.
|
seed
|
Python integer seed for RNG |
name
|
name to give to the op. |
Returns | |
---|---|
samples
|
a Tensor with prepended dimensions sample_shape .
|
stddev
stddev(
name='stddev'
)
Standard deviation.
Standard deviation is defined as,
stddev = E[(X - E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
stddev
|
Floating-point Tensor with shape identical to
batch_shape + event_shape , i.e., the same shape as self.mean() .
|
survival_function
survival_function(
value, name='survival_function'
)
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x]
= 1 - P[X <= x]
= 1 - cdf(x).
Args | |
---|---|
value
|
float or double Tensor .
|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype .
|
variance
variance(
name='variance'
)
Variance.
Variance is defined as,
Var = E[(X - E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
Args | |
---|---|
name
|
Python str prepended to names of ops created by this function.
|
Returns | |
---|---|
variance
|
Floating-point Tensor with shape identical to
batch_shape + event_shape , i.e., the same shape as self.mean() .
|