SingleElementSequence
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
継承されたメソッド
クラスjava.lang.Objectからブール値 | 等しい(オブジェクト arg0) |
最終クラス<?> | getクラス() |
整数 | ハッシュコード() |
最後の空白 | 通知する() |
最後の空白 | すべて通知() |
弦 | toString () |
最後の空白 | wait (long arg0, int arg1) |
最後の空白 | 待機(長い引数0) |
最後の空白 | 待って() |
インターフェース java.lang.Iterable から抽象的な空白 | forEach (Consumer<? super T> arg0) |
抽象反復子<U extends NdArray <T>> | イテレータ() |
抽象 Spliterator<U extends NdArray <T>> | スプリテレーター() |
パブリックメソッド
各要素を新しいスライスとして返します。
従来の Java コレクションとは異なり、 NdArraySequence
の要素は一時的です。つまり、新しいNdArray
インスタンスが反復ごとに割り当てられます。パフォーマンスを向上させるために、 DataBufferWindow
を使用して同じインスタンスをリサイクルして、このシーケンスのすべての要素を表示できます。
ただし、場合によっては、返される各要素が元の配列の新しいスライスであることを確認するために、このような最適化を無効にした方がよい場合もあります。たとえば、訪問した 1 つ以上の要素がシーケンス反復の範囲を超えて存在する必要がある場合、 asSlices()
シーケンスによって返されるすべての要素が一意のインスタンスであることを確認します。
final List<IntNdArray> vectors = new ArrayList<>();
IntNdArray matrix = NdArrays.ofInts(Shape.of(6, 6));
ndArray.elements(0).forEach(e -> vectors::add); // Not safe, as `e` might always be the same recycled instance
ndArray.elements(0).asSlices().forEach(e -> vectors::add); // Safe, each `e` is a distinct NdArray instance
返品
- 新しいスライスとして反復された各要素を返すシーケンス
public void forEachIndexed (BiConsumer<long[], U> Consumer)
public Iterator<U> iterator ()
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[null,null,["最終更新日 2025-07-26 UTC。"],[],[],null,["# SingleElementSequence\n\npublic final class **SingleElementSequence** \nA sequence of one single element \n\n### Public Constructors\n\n|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| | [SingleElementSequence](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SingleElementSequence#SingleElementSequence(org.tensorflow.ndarray.impl.AbstractNdArray\u003cT, U\u003e))([AbstractNdArray](/jvm/api_docs/java/org/tensorflow/ndarray/impl/AbstractNdArray)\\\u003cT, U\\\u003e ndArray) |\n\n### Public Methods\n\n|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [NdArraySequence](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence)\\\u003cU\\\u003e | [asSlices](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SingleElementSequence#asSlices())() Returns each element as a new slice. |\n| void | [forEachIndexed](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SingleElementSequence#forEachIndexed(java.util.function.BiConsumer\u003clong[], U\u003e))(BiConsumer\\\u003clong\\[\\], U\\\u003e consumer) |\n| Iterator\\\u003cU\\\u003e | [iterator](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SingleElementSequence#iterator())() |\n\n### Inherited Methods\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.ndarray.NdArraySequence](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence) \n\n|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [NdArraySequence](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence)\\\u003cU extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e | [asSlices](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence#asSlices())() Returns each element as a new slice. |\n| abstract void | [forEachIndexed](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence#forEachIndexed(java.util.function.BiConsumer\u003clong[], T\u003e))(BiConsumer\\\u003clong\\[\\], U extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e consumer) Visit each elements of this iteration and their respective coordinates. |\n\nFrom interface java.lang.Iterable \n\n|-----------------------------------------------------------------------------------------------------|-------------------------------------|\n| abstract void | forEach(Consumer\\\u003c? super T\\\u003e arg0) |\n| abstract Iterator\\\u003cU extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e | iterator() |\n| abstract Spliterator\\\u003cU extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e | spliterator() |\n\nPublic Constructors\n-------------------\n\n#### public\n**SingleElementSequence**\n([AbstractNdArray](/jvm/api_docs/java/org/tensorflow/ndarray/impl/AbstractNdArray)\\\u003cT, U\\\u003e ndArray)\n\n\u003cbr /\u003e\n\nPublic Methods\n--------------\n\n#### public [NdArraySequence](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence)\\\u003cU\\\u003e\n**asSlices**\n()\n\nReturns each element as a new slice.\n\nUnlike conventional Java collections, elements of a `NdArraySequence` are transient, i.e. new `NdArray`\ninstances are allocated for each iteration. To improve performance, the same instance can be recycled to view\nall elements of this sequence, using a [DataBufferWindow](/jvm/api_docs/java/org/tensorflow/ndarray/buffer/DataBufferWindow).\n\nIn some cases though, it might be preferable to disable such optimizations to ensure that each element returned is a\nnew slice of the original array. For example, if one or more elements visited must live beyond the scope of the sequence\niteration, `asSlices()` makes sure that all elements returned by the sequence are unique instances.\n\n final List\u003cIntNdArray\u003e vectors = new ArrayList\u003c\u003e();\n IntNdArray matrix = NdArrays.ofInts(Shape.of(6, 6));\n ndArray.elements(0).forEach(e -\u003e vectors::add); // Not safe, as `e` might always be the same recycled instance\n ndArray.elements(0).asSlices().forEach(e -\u003e vectors::add); // Safe, each `e` is a distinct NdArray instance\n \n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n##### Returns\n\n- a sequence that returns each elements iterated as a new slice \n\n#### public void\n**forEachIndexed**\n(BiConsumer\\\u003clong\\[\\], U\\\u003e consumer)\n\n\u003cbr /\u003e\n\n#### public Iterator\\\u003cU\\\u003e\n**iterator**\n()\n\n\u003cbr /\u003e"]]